
www.manaraa.com

Handling of Precise Interrupts in Pipelining Systems

By

Amal M. Barakat Al- Dweik

Supervisor

Dr. Sami Serhan

Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science in

Computer Science

Faculty of Graduate Studies

University of Jordan

May ٢٠٠٢

www.manaraa.com

 ii

This thesis was successfully defended and approved on: 30-May-2002.

Examination Committee

Signature

Dr. Sami Serhan, Chairman
Assist. Prof. Of Compiler Design

………………………………….

Prof. Oqeili Saleh, Member
Prof. Of Computer Architecture

………………………………….

Dr. Mohammed Mahafzah, Member
Assoc. Prof. Of Parallel Architecture

………………………………….

Dr. Andraws Sweidan, Member
Assist. Prof. Of Complex Systems

………………………………….

Dr. Imad Salah, Member
Assist. Prof. Of Complex Systems

………………………………….

www.manaraa.com

 iii

DEDICATION

To all our people in Palestine

To my mother, my father, brothers, and sisters.

www.manaraa.com

 iv

ACKNOWLEDGEMENT

I’m grateful to Dr. Sami for his idea of the thesis. I would like to thank him for

his continuous encouragement, support, and help. A special thank for all the colleagues

in the University of Jordan for their support.

I acknowledge the German Academic Service Exchange (DAAD) for granting

me the scholarship along my study in the master.

www.manaraa.com

 v

LIST OF CONTENTS

Examination Committee Decision ii

Dedication iii

Acknowledgment iv

List of Tables vii

List of Figures viii

Abstract xii

1. INTRODUCTION 1

 1.1 Preface 1

 1.2 Objectives of Handling Precise Interrupts 2

 1.3 Previous Works 3

 1.4 Main Points of Contribution 4

 1.5 Organization of the Thesis 5

2. BACKGROUND KNOWLEDGE 7

 2.1 Pipelining 7

 2.2 Interrupts 16

 2.3 Precise Interrupts 22

 2.4 Imprecise Interrupts 24

 2.5 Tomasulo’s Algorithm 25

 2.6 Register Renaming 27

 2.7 VLIW Processor 31

 2.8 Summary 41

3.SCHEMES FOR HANDLING PRECISE INTERRUPTS IN

PIPELINING SYSTEMS

42

 3.1 Preface 42

 3.2 In Order Instruction Completion 44

www.manaraa.com

 vi

 3.3 Reorder Buffer 45

 3.4 Reorder Buffer with Forwarding 49

 3.5 Future File Scheme 51

 3.6 History Buffer 52

 3.7 Summary 53

4.IMPLEMENTATION OF IN ORDER COMPLETION 54

 4.1 Architectural Model 54

 4.2 Interrupts prior to Instruction Issue 56

 4.3 In Order Instruction Completion 57

 4.4 Summary 72

5. IMPLEMENTATION OF OUT OF ORDER COMPLETION 73

 5.1 Reorder Buffer – Basic Method 73

 5.2 Reorder Buffer with Bypass paths 90

 5.3 History Buffer 93

 5.4 Future File 107

 5.5 Summary 126

6. THE PROPOSED TECHNIQUE 127

 6.1 Scheme Description 127

 6.2 The Proposed Scheme Algorithm 129

 6.3 Scheme Analysis 139

 6.4 Summary 142

7. PRECISE INTERRUPTS HANDLING IN VLIW PROCESSORS 143

 7.1 Handling of Precise Interrupts in VLIW Processors 143

 7.2 Reorder Buffer with Future File 144

 7.3 History Buffer 145

 7.4 Current State Buffer 146

www.manaraa.com

 vii

 7.5 Compiler Support 148

 7.6 Schemes Experiments 149

 7.7 Summary 152

8. CONCLUSION AND FUTURE WORK 153

 8.1 Preface 153

 8.2 The Comparison Between schemes 154

 8.3 Extensions 159

 8.4 Future Work 165

 8.5 Summary 165

REFERENCES 167

www.manaraa.com

 viii

LIST OF TABLES

Table 4.1 Sample1 of the code used in the thesis 55

Table 4.2 Sample 2 of the code used in the work. 56

Table 4.3 Result Shift Register 58

Table 4.4 RSR including PC to implement Precise Interrupt 59

Table 5.1 RSR file used in the ROB scheme 74

Table 5.2 ROB file used in the ROB scheme 75

Table 5.3 RSR, and HB files used in History Buffer scheme 95

Table 6.1 Result Shift Register
128

Table 7.1 A sample code for a 2-issue VLIW processor 144

Table 7.2 Reorder Buffer 144

Table 7.3 Execution steps in the Reorder and History Buffer 149

Table 7.4 Execution steps in the current-state buffer 150

www.manaraa.com

 ix

List of Figures

Figure 2.1 National Diagram of a pipeline processor 8

Figure 3.1 Precise Tomasulo Pipeline with the ROB 48

Figure 3.2 Forms of Reservation Stations 50

Figure 4.1 Pipelined Implementation of our Architectural Model 55

Figure 4.2. In Order Completion, S1. No. of Shifts/Instructions 63

Figure 4.3. In Order Completion, S1. No. of (Failed Tests /Instructions) 66

Figure 4.4. In Order Completion, S1. Percentage between the Failed Tests and

Succeeded Tests
66

Figure 4.5: In Order Completion, S2. No. of (Failed Tests /Instructions) 68

Figure 4.6. In Order Completion, S2:, the percentage between the Failed Tests

and Succeeded Tests
69

Figure 4.7. In Order Completion, S2. No. of Shifts/Instructions 70

Figure 5.1 Processor organization with a Reorder Buffer 73

Figure 5.2 Illustration of the ROB pointers 74

Figure 5.3. ROB scheme. S1: the no of Failed Tests/ Instruction 81

Figure 5.4. ROB scheme. S2: the no of Failed Tests/ Instruction 83

Figure 5.5. ROB scheme. S1: Percentage of Failed and Succeeded Tests 84

Figure 5.6. ROB scheme. S2: Percentage of Failed and Succeeded Tests 84

Figure 5.7. After increasing the size of the ROB file 88

Figure 5.8 Processor Organization of ROB with forwarding 91

Figure 5.9 ROB scheme with forwarding 91

Figure 5.10 The Basic Structure of a system with a History Buffer 94

Figure 5.11 Entries to keep original values 95

Figure 5.12. HB scheme. S1: the no of Failed Tests/ Instruction 101

Figure 5.13. HB scheme. S2: the no of Failed Tests/ Instruction 103

Figure 5.14. HB scheme. S1: Percentage of Failed and Succeeded Tests 104

www.manaraa.com

 x

Figure 5.15. HB scheme. S2: Percentage of Failed and Succeeded Tests 104

Figure 5.16. After increasing the size of the HB file 107

Figure 5.17 Processor Organization with a Future File 108

Figure 5.18. FF scheme. S1: the no of Failed Tests/ Instruction 115

Figure 5.19. FF scheme. S2: the no of Failed Tests/ Instruction 117

Figure 5.20. FF scheme. S1: Percentage of Failed and Succeeded Tests 118

Figure 5.21. FF scheme. S2: Percentage of Failed and Succeeded Tests 118

Figure 5.22. After increasing the size of the FF and ROB file 121

Figure 5.23. After increasing the size of the FF and ROB file using the

original flow of algorithm
121

Figure 6.1 Compromised Approach, S2, the No. of (Failed Tests /Instructions) 133

Figure 6.2 Compromised Approach, S2, the percentage between the Failed

Tests and Succeeded Tests
134

Figure 6.3 Compromised Approach, S2, the No. of (Failed Tests /Instructions) 134

Figure 6.4 Compromised Approach, S2, the percentage between the Failed

Tests and Succeeded Tests
136

Figure 6.5 Compromised Approach. After increasing size of the RSR file 139

Figure 7.1 The current-state buffer and mask register 146

Figure 7.2 The comparison diagram between the three schemes 151

Figure 8.1. Comparison Between the Schemes 158

www.manaraa.com

 xi

Handling of Precise Interrupts in Pipelining Systems

By

Amal M. Barakat Al-Dweik

Supervisor

Dr. Sami Serhan

Abstract

Handling of precise interrupts in pipelining systems is a significant field of

research in the computer architecture. Today’s high-performance processors employ

out-of-order execution, which permits instructions to be overtaken by later instructions.

Many schemes were used, in the time of interrupt, to maintain the sequential state, and

not modifying process state in an order different from that defined by the sequential

architectural model.

The thesis mainly is concerned with two techniques: In Order Completion, and

the Out- of Order Completion. Both techniques are implemented and tested. The Out Of

Order Completion technique consists of: Reorder Buffer, Reorder Buffer with Bypass

Paths, History Buffer, and the Future File schemes. The results obtained and the

comparisons between all of these techniques are presented throughout the thesis.

A new approach is proposed in this thesis. It is a compromised scheme between

the In Order Completion and the Out Of Order Completion. The control logic, the flow

of information, and the hardware components are stated. After the new proposed

scheme is analyzed, we found that it gives better results than the other two techniques

regarding to the hardware components and the control logic used in this scheme.

www.manaraa.com

1. INTRODUCTION

1.1 Preface:

Most current computer architectures are based on a sequential model of program

execution. In contrast, a high performance implementation may be pipelined, permitting

several instructions to be executed at the same time. Complex hardware schemes are

required to maintain the sequential state since the use of a sequential architecture and a

pipelined implementation clash at the time of an interrupt; pipelined instructions may

modify the process state in an order different from that defined by the sequential

architectural model. At the time an interrupt condition is detected, the hardware may

not be in a state that is consistent with any specific program counter value (James et al.,

1988). When an interrupt occurs, the interrupted process state must be saved (James et

al., 1988).

Interrupts are precise if the saved processor states are consistent with the in-

order states defined by the program sequence where one instruction completes before

the next begins (Sang-Joon et al., 1999).

Therefore, today’s high-performance microprocessors employ out-of-order

execution to raise performance. In contrast to in-order execution, out-of-order execution

permits these instructions, which block the execution stream, to be overtaken by later

instructions. This results in better utilization of the function units and in a higher

performance compared to the pipelined in-order designs (Daniel et al., 2001). The out-

of-order issue of instructions has drastically increased the utilization of the precise

interrupt mechanism to handle exceptional events (Amerl et al., 200).

www.manaraa.com

2

1.2 Objectives of Handling Precise Interrupts

In computers, there is a problem in writing programs; that is programs are not

linear! One or more pipeline stages may have to be flushed in processing an exception.

The number of flushed stages depends on where the exception is triggered in the

pipeline. Complex hardware schemes are required to maintain the sequential state. The

out-of-order issue can cause a serious problem at the time of interrupts, because it

makes the process states different from those defined by the program sequence (Sang-

Joon et al., 1999). Interrupt handlers should not modify any of source registers in the

interrupted operation because subsequent operations with respect to the original

program order that use the same source register would need to be re-issued and re-

executed after resumption. The processor cannot re-execute those operations because

they may have already updated the processor state. So, we have to preserve registers in

the interrupted processor state.

In pipelined machines, most difficult exceptions have two properties:

a. They occur within the instruction.

b. They must be restartable.

 Although precise interrupt is preferable, the implementation of it is difficult

because of the following:

1. Interrupts can occur anywhere during the execution of an instruction.

2. Multiple instructions are being executed, and each may have partially

updated state information.

3. Multiple instructions are being executed, so multiple interrupts can occur

at the same time.

www.manaraa.com

3

So, with the current trends in the design of processors and operating systems, the

cost of handling exceptions precisely is also becoming extremely expensive; this is

because of their implementation. Exceptional situations are harder to handle in a

pipelined machine because the overlapping of instructions makes it more difficult to

know whether an instruction can safely change the state of the machine or not.

1.3 Previous Works

There are many studies, which attempted to study or to develop the handling of

precise interrupts in pipelining systems. James E. Smith and Gurindar S. Sohi have

some of these researches in their research in the superscalar processing (James et al.,

1995) focusing on converting an ostensibly sequential program into a more parallel one.

They used the phase in which they recommend of committing the Process State in

correct order so that precise interrupts can be supported. Pierguido V.C. Caironi,

Lorenzo Mezzalira, Mariagiovanna Sami presented, in (pierguido et al., 1996), a

hardware solution to the problem of precise interrupts and exceptions in superscalar

RISC CPU architectures. This solution called Context Reorder Buffer (CRB) which is

based both on the reorder buffer architecture presented by Smith and Pleszkun, and on

the concept of context. Daniel Kroning proved, in (Daniel, 2001), the data consistency

of the pipelined machines and presented a generic approach to speculative execution,

where he proposed a data consistency criterion for such a machine. He applied this

method in order to implement and prove DLX pipeline with branch prediction and

precise interrupts. E .Ozer, S.W.Sathaye, K.N.Menezes, S. Banerjia, M.D.Jennings and

T.M.Conte have mentioned in their study, that “interrupt handling in out-of-order

execution processors requires complex hardware schemes to maintain the sequential

state, especially implementing the precise interrupts”. They apply in their work the

www.manaraa.com

4

reorder buffer with future file and the history buffer methods to Very Long Instruction

width (VLIW) processors, and present a new scheme, called the “ Current-State Buffer

(CSB)”. Daniel Kroning in his paper, (Daniel et al., 2001), combines the Tomasulo

Scheduler with a reorder buffer, which implements precise interrupts. He gave a

mathematical correctness proof for this enhanced scheduling algorithm. James E. Smith,

Andrew R. Plezkun in (James et al., 1988) described the precise interrupt problem and

discussed five solutions, which are In-Order Instruction completion, Reorder Buffer,

Reorder Buffer with Bypass Paths, History Buffer, and Future File. They discussed the

performance for each method examined. David Alan Gilbert in (David ,1997) described

a solution to the problem of dependency and exception-handling mechanisms in the

context of a third generation asynchronous implementation of the Advanced Risk

Management (ARM) instruction set architecture. The Reorder Buffer was the basis of

the architecture and the novel enhancements as Hwu and Patt proposed. They described

an enhanced mechanism, which reduces the need to stall the pipeline.

1.4 Main Points of Contribution

We built our own simulators to implement the schemes examined and to verify

the results obtained. There was not any complete algorithm, we wrote these algorithms

with their full implementation, and did all the analysis for these schemes. We searched

for any ready used simulator, but unfortunately, we found only some, which is related to

pipelining without any handling of the interrupts. They mentioned that interrupts

problem is another heavy work that is not matter of concern. Even though, these

simulators were built with the full corporation between several universities in the

United States of America and the IBM Company, they were incomplete.

The following are the main points of contribution presented in the thesis:

www.manaraa.com

5

1. Two architectural models are used throughout the thesis: The scalar

architecture and the VLIW processors.

2. All algorithms used in the thesis are stated, implemented, and analyzed.

3. The In-order Completion, and the Out of Order Completion techniques are

used. The Out of Order Schemes used are: Reorder Buffer, the Reorder Buffer

with Bypass paths, the History Buffer, and the Future File. The performance

obtained from their implementation is discussed.

4. A new technique is suggested to handle the precise interrupts in pipelining

systems. It is a compromised technique between the In Order Completion and

Out of Order Completion.

5. The proposed scheme is verified to be better than other schemes. It is

compared with the other schemes, regarding to the hardware components.

Results and analysis are introduced.

6. As a conclusion, a comparative analysis for all schemes used is presented and

analyzed.

1.5 Organization of the Thesis

Chapter two presents the background knowledge of the thesis. The literature

review of the thesis is the subject of chapter three. The basic approaches for handling

the precise interrupts in the pipelining systems are fully discussed, and expanded

throughout the thesis.

The implementation part of the thesis is discussed fully in chapter four and

chapter five. Chapter four discusses the In Order Completion scheme. The Out of Order

schemes, their full analysis and discussion are introduced in chapter five. Chapter six

www.manaraa.com

6

discusses the compromised scheme, which is suggested in the thesis. The final

implementation chapter is chapter seven; it introduces the precise interrupts handling in

VLIW processors.

Chapter eight contains the final conclusion of the thesis and the extensions

suggested as a future work.

www.manaraa.com

2. BACKGROUND KNOWLEDGE

 This chapter is a brief review of different fundamental subjects related to the

thesis. The basics, the terminologies, and many concepts used throughout the thesis are

defined in the following pages.

2.1 Pipelining

A Pipeline is a series of stages, where some work is done at each stage. The

work is not finished until it has passed through all stages. Pipelining is an

implementation technique in which multiple instructions are overlapped in execution.

A pipelined processor consists of a sequential, linear list of segments; where

each segment performs one computational task or group of tasks. Pipelining increases

the CPU instruction throughput; which means that a program runs faster and has lower

total execution time. It also increases the number of instructions completed per unit of

time. But it does not reduce the time of execution of individual instructions. In fact, it

slightly increases the execution time of each instruction due to the overhead in the

pipelined control.

Pipelining is used to obtain improvements in processing time that would be

unobtainable with existing non-pipelined technology. Similarly, the goal for the IBM

360/91 was an improvement of one to two orders of magnitude over the 7090.

Technology advances could only bring about a four-fold improvement. In a more recent

example, the 6502 microprocessor had a throughput similar to the 8080 processor

running at a clock rate four times faster. This was due to the pipelined architecture of

the 6502 versus the non-pipelined 8080.

www.manaraa.com

 8

There are two types of pipelines: Instructional pipeline where different stages of

an instruction fetch and instruction execution are handled in a pipeline, and Arithmetic

pipeline where different stages of an arithmetic operation are handled along the

pipeline.

 Cycle1 Cycle2 Cycle3 Cycle4 Cycle5

Seg #1 S1 S2 S3 S1 S2

Seg #2 S1 S2 S3 S1

Seg #3 S1 S2 S3

Figure 2.1. Notional diagram of a pipelined processor; the segments are arranged

vertically, and time moves along the horizontal axis.

A pipelined processor can be represented in two dimensions, as shown in Figure

2.1. Here, the pipelined segments (Seg #1 through Seg #3) are arranged vertically, so

the data can flow from the input at the top left downward to the output of the pipeline

(after Segment 3) (URL, scism).

There are three things that one must observe about the pipeline.

1. The work (in a computer) is divided up into pieces that fit more or less into the

segments allocated for them.

2. This implies that in order for the pipeline to work efficiently and smoothly, the

work partitions must each take about the same time to complete. Otherwise, the

longest partition requiring time T would hold up the pipeline, and every segment

would have to take time T to complete its work. For fast segments, this would

mean much idle time.

3. In order for the pipeline to work smoothly, there must be few (if any) exceptions

or hazards that cause errors or delays within the pipeline. Otherwise, the

INPUT

New Instruction

www.manaraa.com

 9

instruction will have to be reloaded and the pipeline restarted with the same

instruction that causes the exception. There are additional problems we need to

discuss about pipelined processors, which we will consider shortly.

If an N-segment pipeline is empty before an instruction starts, then N + (N-1)

cycles or segments of the pipeline are required to execute the instruction, because it

takes N cycles to fill the pipe.

Note that we just used the term "cycle" and "segment" synonymously. In the

type of pipelines each segment takes one cycle to complete its work. Thus, an N-

segmented pipeline takes a minimum time of N cycles to execute one instruction.

Pipeline Hazards

Pipelined processors have several problems associated with controlling smooth,

efficient execution of instructions on the pipeline.

There are two disadvantages of pipelined architecture:

1. The complexity.

2. The inability to continuously run the pipeline at full speed, i.e. the pipeline

stalls.

There are many reasons that make pipelining not running at full speed. There is

a phenomenon called pipeline hazards, which disrupts the smooth execution of the

pipeline. The resulting delays in the pipeline flow are called bubbles. These pipeline

hazards include

www.manaraa.com

 10

1. Structural Hazards: occur when different instructions collide while trying to access

the same piece of hardware in the same segment of pipeline. Having redundant

hardware for the segments wherein the collision occurs can alleviate this type of

hazard. Occasionally, it is possible to insert stalls or reorder instructions to omit this

type of hazard.

2. Data Hazards: occur when an instruction depends on the result of a previous

instruction still in the pipeline, where the result has not yet been computed. The

simplest remedy is to insert stalls in the execution sequence, which reduces the

pipeline's efficiency. The solution to data dependencies is two fold. First, one can

forward the result of the Arithmetic and Logic Unit (ALU) to the write back or data

fetch stages. Second, in selected instances, it is possible to restructure the code to

eliminate some data dependencies.

3. Control Hazards: can result from branch instructions. The branch target address

might not be ready in the time for the branch to be taken, which results in stalls

(dead segments) in the pipeline that have to be inserted as local wait events, until

processing can resume after the branch target is executed. Control hazards can be

alleviated through accurate branch prediction (which is difficult), and by delayed

branch strategies.

These issues can successfully be dealt with. But detecting and avoiding the

hazards lead to a considerable increase in hardware complexity. The control paths

controlling the gating between stages can contain more circuit levels than the data paths

being controlled. The processor can stall on different events:

1. A cache misses. A cache miss stalls all the instructions on pipeline both before

and after the instruction causing the miss.

www.manaraa.com

 11

2. A hazard in pipeline. Eliminating a hazard often requires that some instructions

in the pipeline allowed proceeding while others be delayed. When an

instruction is stalled, all the instructions issued later than the stalled instruction

are also stalled. Instructions issued earlier than the stalled instruction must

continue, since otherwise the hazard will never be cleared.

In pipelining, there is a considerable increase in hardware complexity. Other

problem arises when a branch instruction comes along; it is impossible to know in

advance, which path the program is going to take and, if the machine guesses wrong, all

the partially processed instructions in the pipeline must be replaced.

When a data dependency does occur, there are two possible strategies:

1. Detect the data dependencies and hold up the pipeline completely until the

dependencies have been resolved (by instruction already in the pipeline being

fully executed).

2. Allow all instructions to be fetched into the pipeline, but only allow

independent instructions to proceed to their completion, and delay instructions,

which are dependent upon other, not yet, executed (Barry, 1996).

Practically there are four types of data dependency, which are:

1. Read-After-Write (RAW): it exists if a read operation occurs before a previous

write operation has been completed, and hence the read operation would obtain

an incorrect value (a value not yet updated).

2. Write-After-Read (WAR): it exists when a write operation occurs before a

previous read operation has time to complete, and again the read operation

would obtain an incorrect value (a prematurely updated value).

www.manaraa.com

 12

3. Write-After-Write: it exists if there are two write operations upon a location

such that the second write operation in the pipeline completes before the first.

Hence the written value will be altered by the first write operation when it

completes.

4. Read-After-Read: in which read operations occur out of order, doesn’t normally

cause incorrect results (Barry, 1996).

Out-Of-Order Execution

Data dependencies and different latencies of the functional units can cause

additional delays, which reduce performance. In order to eliminate these delays, the rule

of in-order execution of all instruction phases must be dropped. The result is an out-of-

order execution algorithm. An out-of-order execution algorithm tries to increase

performance by distributing the instructions among the available hardware components

regardless of their original order. There are two main requirements for such an

algorithm:

• The algorithm must maintain data consistency.

• The algorithm is supposed to achieve a high utilization of the functional units to

reduce the delays. (Daniel et al., 2001)

Pipeline Performance Analysis

When designing instruction sets for pipelining, there is a set of guidelines that

can be used, as follows:

1. Avoid variable instruction lengths whenever possible:

www.manaraa.com

 13

a. Variable length instructions complicate hazard detection and precise exception

handling.

b. Sometimes it is worth to use variable instruction lengths, because of

performance advantages, i.e., caches.

i. If were used frequently, the added complexity is dealt with by freezing the

pipeline.

2. Avoid sophisticated addressing modes:

a. Addressing modes that update registers (post-auto increment) complicates

exceptions and hazard detection.

b. It also makes it harder to restart instructions.

c. Allowing addressing modes with multiple memory accesses also complicates

pipelining.

3. Don't allow self-modifying code:

a. Since it is possible that the instruction being modified is already in the pipeline,

the address being written must constantly be checked.

i. If it is found, then the pipeline must be flushed or the instruction is updated!

b. Even if it's not in the pipeline, it could be in the instruction cache.

4. Avoid implicitly setting condition codes (CCs) in instructions:

a. This makes it harder to avoid control hazards since it's impossible to determine

if CCs are set on purpose or as a side effect.

b. For implementations that set the CC almost unconditionally:

i. Makes instruction reordering difficult, since it is hard to find instructions that can

be scheduled between the condition evaluation and the branch.

www.manaraa.com

 14

Performance analysis helps one to intelligently determine whether or not a given

processor is suitable computationally for a specific application as discussed fully in

(Schmalz, 1998).

Effect of Exceptions

For purposes of discussion, assume that we have M instructions executing on an N-

segment pipeline with no stalls, but that a fraction fex of the instructions raise an

exception in the EX stage. Further assume that each exception requires that

(a) The pipeline segments before the EX stage be flushed,

(b) The exception be handled, requiring an average of H cycles per exception, then

that

(c) The instruction causing the exception and its following instructions is reloaded

into the pipeline.

Exceptions as Hazards

Hardware and software must work together in any architecture, especially in a

pipeline processor. Here, the processor control must be designed so that the following

steps occur when an exception is detected:

• Hardware detects an exception (e.g., overflow in the ALU) and stops the offending

instruction at the EX stage.

• Pipeline loader and scheduler allow all prior instructions (e.g., those already in the

pipeline in MEM and WB) to complete.

www.manaraa.com

 15

• All instructions that are present in the pipeline after the exception is detected are

flushed from the pipeline.

• The address of the offending instruction (usually the address in main memory) is

saved in the EPC register, and a code describing the exception is saved in the Cause

register.

• Hardware control branches to the exception handling routine (part of the operating

system).

• The exception handler performs one of three actions:

1. Notify the user of the exception (e.g., divide-by-zero or arithmetic-overflow) then

terminate the program;

2. Try to correct or mitigate the exception then restart the offending instruction; or

3. If the exception is a kind interrupt (e.g., an I/O request), then save the

program/pipeline state, service the interrupt request, then restart the program at

the instruction pointed to by EPC + 4. (M.S Schmalz, 1998).

In any case, the pipeline is flushed as described.

In general, we can say that, if a pipeline has N segments, and the EX stage is at

segment 1 < i < N, then two observations are key to the prediction of pipeline

performance:

• Flushing: negates the processing of the (i-1) instructions following the offending

instruction. These must be reloaded into the pipe, at the cost of i cycles (one cycle to

flush, i-1 cycles to reload the i-1 instructions after the exception is processed).

• Completing: the N-i instructions that were loaded into the pipeline prior to the

offending instruction takes N-i clock cycles, which are executed:

www.manaraa.com

 16

1. Prior to, or

2. Concurrently with, the reloading of the instructions i-1 that followed the I-
th

instruction (in the EX stage).

It is readily seen that the total number of wasted cycles equals

 (i-1) + (N-i) = N - 1, which is precisely the number of cycles that it takes to set up or

reload the pipeline.

The proliferation of unproductive cycles can be mitigated by the following

technique:

1. Freeze the pipeline state as soon as an exception is detected.

2. Process the exception via the exception handler, and decide whether or not to halt or

restart the pipeline.

3. If the pipeline is restarted, reload the (i-1) instructions following the offending

instruction, concurrently with completing execution of the (N-i) instructions that

were being processed prior to the offending instruction.

If Step 3 can be performed as stated, then the best-case penalty is only one cycle, plus

the time incurred by executing the exception handler. If the entire pipeline needs to be

flushed and restarted, then the worst-case penalty is N cycles incurred by flushing the

pipe, then reloading the pipeline after the instructions preceding the offending

instruction have been executed. If the offending instruction must be restarted, then a

maximum of i cycles are lost (one cycle for flush, plus (i-1) cycles to restart the

instructions in the pipe following the offending instruction).

2.2 Interrupts

www.manaraa.com

 17

Sometimes during the execution of the instructions, something interrupts the

regular execution sequence, and control transfers to a piece of code known as the

interrupt handler, whose purpose is to process the interrupt. The interrupt handler takes

appropriate action, and then, possibly, allows normal execution to resume (Mayan,

1996).

So, interrupts, also known as faults and exceptions, are a means of breaking out

of the normal flow of control of a code block in order to handle errors or other

exceptional conditions. An exception is raised at the point where the error is detected; it

may be handled by the surrounding code block or by any code block that directly or

indirectly invoke the code block where the error occurred (Python, 2001).

When exception occurs, pipelined control takes the following steps to save state

safely:

1. Turns off all writes for faulting instruction and its successors, e.g., by turning

them into no-ops.

2. Forces trap instruction into pipeline on next Instruction Fetch (IF).

3. Save Program Counter (PC) of faulting instruction so that user program

execution can restart with fetch of that instruction after Operating System (OS)

has finished handling exception.

If delayed branches are used, instructions in pipeline are not necessarily in

sequence, so each PC has to be saved in step 3. Reloading PCs and restarting instruction

stream is performed by special instructions (e.g., RFE in DLX).

In general, an exception handler should preserve all registers. However, there

are several special cases where you may want to squeeze a register value before

www.manaraa.com

 18

returning. Nevertheless, you should not arbitrarily modify registers in an exception

handling routine unless you are intended to immediately abort the execution of your

program.

To properly process an interrupt, also called as exception, an interrupt handler

must identify the interrupting instruction, determine the corrective action, and determine

which registers should be used for input and output. While processing the interrupt, the

handler must modify the state associated with the program. Finally, after processing the

interrupt, it must prompt the processor to resume normal execution if appropriate. The

hardware must provide mechanisms that enable the interrupt handler to accomplish all

these tasks. Most processors do this by implementing precise interrupts (Mayan, 1996).

When the interrupt handler has completed processing, it must transfer control to

the program to resume normal execution with as little disruption as possible; thus, the

architecture must define a restart mechanism. Together, the interrupt state specification

and the restart mechanism define the interrupt model of the architecture.

Normally, the program counter governs control flow through a program. As a

result, the compiler (or programmer) knows each register’s values, the instructions that

generated those values, and how the control can reach those instructions. Unlike a

normal program, an interrupt handler cannot expect from where and under what

conditions it will be invoked. However, to properly process an interrupt, the interrupt

handler needs information about the interrupted program. So the architecture must

specify the assumptions an interrupt handler can make about when it will be invoked

and what the machine state will be generated at that point. This specification is the

interrupt state specification (Mayan, 1996).

www.manaraa.com

 19

The constraints imposed by the interrupt handler make it clear that the interrupt

state must meet the following requirements:

1. All instructions that were issued before the excepting instructions could be

complete before control enters the interrupt handler.

2. The state should appear as it would if no instruction is issued after the excepting

instruction.

3. The address of the excepting instruction must be available to the interrupt

handler.

If the interrupt state satisfies theses conditions, the restart mechanism is obvious:

after processing the interrupt, the handler must branch to either the interrupting

instruction (and execute it in the new state, in which it should not cause an interrupt) or

the succeeding instruction (Mayan, 1996).

When an exception is not handled at all, the interpreter terminates execution of

the program, or returns to its interactive main loop (Python, 2001). In a pipelined

machine an instruction is executed step by step and is completed using several clock

cycles. Unfortunately, other instructions in the pipeline can raise exceptions that may

force the machine to abort the instructions in the pipeline before they are completed.

Interrupt Classification

Software interrupts includes the following:

1. I/O device request.

2. Invoking an operating system service from a user program (system call).

3. Breakpoint (programmer-requested interrupt).

www.manaraa.com

 20

4. Integer arithmetic overflow or underflow; FP arithmetic anomaly.

5. Page fault.

6. Misaligned memory accesses (if alignment is required).

7. Memory protection violation.

8. Using an undefined instruction.

9. Hardware malfunction.

10. Power failure.

Five types can characterize the requirements on exceptions:

Synchronous versus ِِِAِِsynchronous.

If the event occurs at the same place every time the program is executed with

the same data and memory allocation, the event is synchronous. With the exception of

hardware malfunctions, devices external to the processor and memory cause

asynchronous events.

Asynchronous events usually can be handled after the completion of the current

instruction, which makes them easier to handle.

User Requested versus Coerced

If the user task directly asks for it, it is a user-requested event. In some sense,

user-requested exceptions are not really exceptions, since they are predictable. They are

treated as exceptions, because the same mechanisms that are used to save and restore

the state are used for these user-requested events. Because the only function of an

instruction that triggers this exception is to cause the exception, user-requested

exceptions can always be handled after the instruction has completed.

www.manaraa.com

 21

Coerced exceptions are caused by some hardware event that is not under the

control of the user program. Coerced exceptions are harder to implement because they

are not predictable.

User Maskable versus user Nonmaskable

If an event can be masked or disabled by a user task, it is user maskable. This

mask simply controls whether the hardware responds to the exception or not.

Within versus Between Instructions

This classification depends on whether the event prevents instruction

completion by occurring in the middle (within) of execution or whether it is recognized

between instructions. Exceptions that occur within instructions are always synchronous,

since the instruction triggers the exception.

It is harder to implement exceptions that occur within instructions than between

instructions, since the instruction must be stopped and restarted.

Resume versus Terminate

If the program's execution always stops after the interrupt, it is a terminating

event. If the program's execution continues after the interrupt, it is a resuming event.

It is easier to implement exceptions that terminate execution, since the machine

need not be able to restart execution of the same program after handling the exception.

www.manaraa.com

 22

The difficult task is implementing interrupts occurring within instructions,

where the instruction must be resumed because it requires another program to be

invoked to save the state of the executing program. So the steps required are:

1. Correct the cause of the exception.

2. Restore the state of the program before the instruction that caused the exception.

3. Start the program from the instruction that caused the exception.

If a pipeline provides the ability for the machine to handle the exception, save

the state, and restart without affecting the execution of the program, the pipeline or

machine is said to be restartable. Almost all machines today are restartable, at least for

integer pipelines, because it is needed to implement virtual memory.

2.3 Precise Interrupts

The definition of precise interrupt reflects execution in a sequential architecture.

In a sequential architecture, instructions are issued serially. An instruction runs to

completion before the next one issue. From the precise interrupt point of view, two

types of interrupts:

1. Detect before issue: e.g. illegal opcode, privileged instructions, some external

interrupts.

2. Detect during execution: e.g. page fault, arithmetic, and some external interrupts.

When an instruction interrupts, processor hardware immediately transfers control

to the interrupts handler. Interrupt is precise if the machine state at the time of the

interrupt is identical to the state that would exist if the implementation were sequential.

This state, known as precise state, meets the following conditions:

www.manaraa.com

 23

1. All instructions that issue prior to the interrupting instruction have completed.

2. No instruction has been issued after the interrupting instruction.

3. The program counter points to the interrupting instruction, is the precise

program counter.

If all the implementation’s interrupts are precise, we say that it follows the

precise interrupt model (Mayan, 1996). The conditions, under which precise instructions

are either necessary or desirable, are:

1. For I/O and timer instruction, (external), precise process state makes restarting

possible.

2. In virtual memory system, (internal), precise instructions allow a process to be

correctly restarted after a page fault has been serviced.

3. For software debugging, it is desirable for the saved state to be precise. This

information can be helpful in isolating the exact instruction and circumstances

that cause the exception condition.

4. For refined recovery from arithmetic exception, software routines may be able to

take steps, rescale floating-point numbers, to allow a process to continue. Some

end cases of modern floating-point arithmetic systems might best be handled by

software, gradual underflow in the proposed IEEE floating point standard.

5. Unimplemented opcodes can be simulated by system software in a way

transparent to the programmer if interrupts are precise. So, lower performance

models of architecture can maintain compatibility with higher performance

models using extended instruction sets.

6. Virtual machine can be implemented if privileged instruction-faults cause

precise instructions.

www.manaraa.com

 24

We can implement the precise interrupt model simply on a non-pipelined,

sequential architecture implementation. But modern processors use pipelining to

improve performance, complicating implementation of precise interrupts (Mayan,

1996).

Unfortunately, pipelining is an important mechanism for improving processor

performance, and interferes with the processor’s ability to handle precise interrupts.

Techniques that implement precise interrupts on pipelined processors use a large

amount of extra hardware or reduce performance, or both. To gain some insight into the

problem, there is a taxonomy that divides interrupts into four classes. For each class we

ask the following questions:

1. Can we interrupt some interrupts precisely yet avoid the performance and /or

hardware penalty?

2. Which interrupts are essential for machine operations? Conversely, which

interrupts can we implement imprecisely without impairing the machine’s

ability to run programs correctly?

3. What benefits can we gain from discarding precision for some interrupts? Since

we must implement the rest of the interrupts precisely, will the implementation

still incur a similar performance and/or hardware cost?

The characteristics listed for the precise-interrupt model are identical to the

requirements of the general interrupt handler.

2.4 Imprecise Interrupts

Because of the multiple instructions that can be in various stages of execution at

any given moment in time, handling an interrupt is one of the more complex tasks. An

www.manaraa.com

 25

imprecise interrupt can result from an instruction exception while the precise address of

the instruction causing the exception is not known! The difficulty arising from

imprecise interrupts should be viewed as a complexity to be overcome, not as an

inherent defect in pipelining.

Some imprecise interrupts are guaranteed to be precise. So, we can implement it

as follows: when an instruction interrupts the processor, if any instruction is issued after

the interrupting instruction has completed, all instructions between the interrupting

instruction and the last completed instruction run to completion. Control transfers to the

interrupt handler in this state. Normal execution can resume after the last completed

instruction (Mayan, 1996).

Usually, an instruction will cause an interrupt is determined in the nth cycle of

its execution. If this n is no longer than the number of cycles necessary to execute the

shortest instruction, that interrupt is precise. No instruction is issued after the

interrupting instruction can have completed, so only instructions issued before the

interrupting instruction will run to completion (Mayan, 1996).

2.5 Tomasulo’s Algorithm

Tomasulo called his mechanism the Common Data Bus, because the mechanism

is more expansive than a simple bus, it is usually referred to as Tomasulo’s algorithm

instead. The underlying principle used is this: when the data is stale, keep track of

where new data will be coming from. Here is how the principle is used. The register file

holds data, for brief windows in time, data words in the register file are stable, and in

that they are soon to be overwritten by an instruction that has not yet completed. Take,

for example, the following code:

www.manaraa.com

 26

lw r1, 16(r2)

addi r1, r1, 1

Ignoring dependences between the instructions, the load instruction would be

likely to take longer time than the add-immediate, because the load performs both an

add-immediate and a memory-access: it requires an add-immediate of register 2 with

the value 16 to generate the load address. Only after the address is generated, the

memory access begins. Therefore, by the time that the addi is ready to read the value of

r1 out of the register file, it is likely that the load is still in mid-execution. If this is the

case, then r1 contains stable data that cannot be used for computation by the addi or any

other instruction that follows the load. Previous architectures would either stall in this

instance or use forwarding paths in the pipeline.

Tomasulo’s algorithm uses a different mechanism: instead of keeping track of

the data in r1, it keeps track of the data’s source, i.e. the load instruction which will

update r1 in the near future. When the load is decoded, it is en-queued in a numbered

reservation station awaiting execution; r1 is tagged as invalid; and the register file holds

the reservation station Identity (ID) instead of r1’s contents.

Therefore, rather than keeping track of the data value, the register keeps track of

where the new data will come from. When the addi instruction is decoded and en-

queued, it reads the ID from the register file and is placed in its own reservation station,

knowing that one of its operands is invalid, but also knowing the unique ID of the

instruction that will produce the operand. That unique ID is the ID of the reservation

station holding the load instruction.

This information is used to forward operands from the functional units to the

instructions waiting data in reservation stations. Whenever a functional unit produces a

www.manaraa.com

 27

result value (either an ALU result or a load-word memory request), the functional unit

producing the value broadcasts that value as well as the corresponding instruction’s ID

on the Common Data Bus. All instructions sitting in reservation stations look to this bus

and gate in the data whenever one of its operands is invalid and the corresponding tag

matches the ID of the data on the common data bus. As soon as an instruction’s

operands are all valid, the instruction is ready to execute, whether this is before or after

the instructions that come before it in the instruction stream. The register file also

monitors this bus, and if the ID on the bus matches the ID in any invalid register, the

data is gated into that register, and the register is marked as valid.

The architecture is very simple but extremely powerful and capable of resolving

all dependencies through the register file. It also provides a form of register renaming

that allows the simultaneous or out-of-order execution of multiple reads and writes to

the same register. The algorithm, as well as numerous variations on it, has become a

stable in modern high-performance CPU design.

2.6 Register Renaming

In the past, renaming has been implemented in the instruction dispatch stage.

This stage is considered to be one of the most critical stages in superscalar processors in

determining cycle time. The renaming process can be implemented in the instruction

fetch stage. Mapping takes place before set selection; this means that all sets go through

the mapping logic, which must be replicated according to the associativity of the cache.

The scheme may require that each source register name be mapped using the

mapping table to its associated physical register. If there are 32 arhitected registers, the

mapping is implemented in the mapping logic as a 32:1 mux. Using a pass-transistor

www.manaraa.com

 28

based multiplexer implementation in CMOS; this will probably involve 4 logic stages.

The source register fields must control several multiplexes; this requires they to be

initially powered up to obtain a fanout estimated to be about 40.

The critical path is determined either by the tag match logic required for cache

operations or by the mapping logic discussed previously. The path through the tag

match logic is influenced by four factors, namely, the associativity of the cache, its size,

the address size, and the fan-out requirements of the tag compared. The tag match logic

starts off by checking, depending on the cache size, possibly the high 18-24 bits of the

address and the program counter for equality, which can be implemented in about 4

stages of logic stages. The result bits then serve as control for a number of multiplexes.

If the implementation attempts to issue 4 instructions per cycle, this implies a fanout of

about 1284. This requires a powering tree that will add 2-3 logic stages, assuming some

of the powering is buried in the compare.

Putting all the requirements together, we observe that both paths require about

the same number of logic stages: about 6-7. This suggests that, assuming CMOS

technology and a set associative cache, the proposed scheme may not increase the

machine cycle time.

Notice that only the source registers go through the mapping logic; specifically,

the time at which the opcodes become available to the instruction decode stage does not

change. This may allow us to overlap some of the mapping with the initial phases of the

instruction decode in the decode stage, if necessary.

None of the other mechanisms required is added to the cycle time. Updating the

map to reflect any remapped registers is not time critical. It can be done in the next

www.manaraa.com

 29

cycle, in parallel with the I-cache access. The mechanism to free physical registers is

also not time-critical. All that matters is that there be enough free physical registers, not

which ones, i.e. throughput matters, not latency. Expanding the number of physical

registers by the number required per cycle can compensate adding an extra cycle to the

time to free a physical register.

Generally, there will be several instructions with no output register, e.g.,

branches, and some with only one input register. Superscalar issue adds a related

problem if some source register name is the same as the result register name of some

instructions fetched at the same time, but prior in the program order, it must use the new

physical register allocated to that register name, rather than the entry in the mapping

table. It would seem that we would need to do some decoding in the instruction-fetch

stage.

However, we can delay these decisions till the next cycle. If the instruction did

not have an output, or multiple instructions had the same output register, the mapping is

updated appropriately. Thus, decodes are not added to the critical path. A similar fix up

has to be performed in the instruction. The fanout can be of this order, or worse, even if

fewer instructions are issued per cycle, depending on the physical organization and read

out of the cache arrays, decode stage. Determining the appropriate register to be used

can be done in parallel with register access. If the physical register, which is provided

by mapping table, is incorrect; the value was read can be discarded. This results in no

loss in performance. Either the instruction did not need that value, or the wrong register

was accessed because some other instructions fetched in parallel had the same output

register name. In the second case, the value needed is the one that will be provided by

the other instruction. That instruction, obviously, cannot have been completed, so the

www.manaraa.com

 30

instruction with the incorrectly mapped register cannot be issued immediately, anyway.

Thus, there is at least a full cycle in which to determine the correct register mapping.

One critical path in register renaming is the path from the instruction fetch to

execution. On a vanillaRISC processor, this path is implemented in two stages,

Instruction-Fetch and Instruction-Decode/Operand-Fetch. Logically, it follows the

following steps:

Fetch ~ Decode ~ ReadValues ---* Execute

Adding renaming adds an extra step:

Fetch ~ Decode ~ Rename ~ ReadValues ~ Execute

If these steps are implemented serially, obviously either an extra stage will be

required, as in [2, 9], or the cycle-time of the existing two stages will be increased. The

only way to avoid this is to implement some of the steps in parallel. The time to perform

an associative lookup is obviously going to be greater than that of a register access. It

may turn out that the associative access will end up increasing the cycle time.

 The mapping mechanism used can be executed in parallel with elements of the

instruction fetch stage without impacting the critical path through that stage. The rest of

the path should not change from that in a vanillaRISC processor. In particular, reading

values involves a normal register access. Associative lookup requires content-

addressable storage to be implemented efficiently. This storage requires complex and

expensive hardware.

 One major source of complexity is determining when physical registers can be

reused. This happens when the register has been written to, there be no outstanding

www.manaraa.com

 31

reads and the associated architect register has been remapped. These must all be true if

all instructions up to and including the instruction that displaced the physical register

has been completed. Clearly, the instruction that allocated the physical register must

have been completed, and therefore the register must have been written to. All the

instructions that could access this register must precede the displacing instruction, and

since they must have completed, all reads of the register must have been accomplished.

And, of course, the register must have been remapped. This criterion is fairly simple to

implement.

2.7 VLIW Processors

 A VLIW processor has many independent functional units but it doesn't try to

schedule them dynamically. Each clock cycle the processor fetches a very long

instruction formatted with a separate field for each functional unit. Control is very

simple: each instruction field is sent to its respective functional unit. The processor

usually has no logic to detect hazards and cause stalls so the compiler must schedule the

code so no hazards will occur at run time (Kenneth E. Batcher, 2002).

Limitations in Multiple-Issue Processors

The VLIW processor just described issues up to four instructions per clock

cycle: will a multiple-issue processor with ten times as many resources, issuing 40

instructions per clock cycle, run ten times as fast. The following factors make it difficult

to scale up a multiple-issue processor (Kenneth E. Batcher, 2002):

- Limitations of Instruction Level Parallelism (ILP) in programs: Each program

has only so much ILP. Most of the ILP is in parallelizable loops and some loops

aren't parallelizable.

www.manaraa.com

 32

1. Some fraction of a program is not parallelizable so Amdahl's Law limits

the speedup: the more one speeds up the parallelizable part of a program

the less time a processor spends in that part.

2. Pipeline depth magnifies the problem. To get good usage of the resources

one must find about:

o (Number of functional units) * (average pipeline depth)

o Independent operations in the code. The higher this product the less likely

the code has that many independent operations.

o In general, large problems have more ILP than small problems. A

processor with a large number of instruction issues per clock cycle needs

large problems to solve: small problems will waste its resources.

Manufacturers of such machines are lucky that there are always a number

of customers with very large problems to solve.

3. Building the hardware: Scaling up the number of functional units (issues per

cycle) adds a burden to other hardware resources.

o Doubling the number of functional units doubles the number of operands fetched

and written each clock cycle: each register file needs twice as many registers,

twice as many read ports, and twice as many write ports. Twice as many

instructions must be issued so twice as much code must be fetched each cycle.

Memory data traffic is also doubled: twice as many memory operands to

read/write each cycle so the functional units aren't starved for data.

o It's much easier to add more functional units than it is to scale up the other

hardware resources. Memory and register file technology puts a limit on how far

a multiple-issue processor can be scaled up.

www.manaraa.com

 33

4. Superscalar Limitations: Dynamic scheduling imposes a limit to the number of

functional units: each clock cycle it compares all result destinations with all

instructions waiting for source operands. Doubling the number of functional

units quadruples the complexity of dynamic scheduling; tripling the resources

multiplies the complexity nine-fold. The cost of dynamic scheduling grows as

the square of the number of functional units.

- VLIW Processor Limitations: Static scheduling by the compiler keeps all

functional units in lock step. If any functional unit stalls (for a cache miss, page

fault, etc.) all other functional units must stall as well: the number of functional

units multiplies the cost in performance for any stall.

1. Changing the number of functional units in a VLIW processor changes the

binary code: binary code for a scaled-up version is not compatible with code for

a low-cost scaled-back version.

2. Compiler Support for Exploiting ILP

Detecting and Eliminating Dependencies

Dependencies must be detected in order to re-schedule code, determine which

loops have parallelism, and to eliminate name dependencies (Kenneth E. Batcher,

2002).

A data dependence is relatively easy to find if the operand producing the

dependence is a scalar with the same name in all instructions that define and use it.

Arrays complicate detection: x [i] and x [j] refer to the same variable when i = j.

Pointers in languages like C are even worse: several pointers can point to the same

variable.

www.manaraa.com

 34

A loop is a good place to look for ILP: if there is no cycle of dependencies the

iterations of the loop can be run in parallel. Consider the following example:

For i: = 1 to 100 do

Begin

A [i]: = B [i] + C [i];

D [i]: = A [i] * E [i];

End;

There are no loop-carried dependencies so the 100 iterations can be run in

parallel but the two statements in the loop body can't be interchanged because of the

data dependence involving A [i]. Optimum machine code for the second statement in

the loop body would not explicitly load A [i] from memory but use the result of the first

statement (Kenneth E. Batcher, 2002).

Software Pipelining

Software pipelining is a technique for reorganizing loops so that each iteration

of the new loop contains instructions from different iterations of the original loop.

Software pipelining and loop unrolling are two techniques for hiding pipeline

latencies. Software pipelining uses less code in the loop body and less registers but loop

unrolling also reduces loop overhead. For pipelines with very long latencies a compiler

might want to use both techniques (Kenneth E. Batcher, 2002).

Trace Scheduling

For processors with many instruction issues per clock cycle a compiler might

have to resort to trace scheduling to find enough ILP to keep the processor busy: it

extends loop-unrolling by finding parallelism across other conditional branches besides

loop branches.

www.manaraa.com

 35

The effectiveness of trace scheduling depends on how well the compiler can

predict the most likely outcomes of conditional branches. From these predictions it

selects a trace: a sequence of basic blocks that the processor will frequently follow.

Code in the trace is then re-scheduled to achieve a high issue rate (Kenneth E. Batcher,

2002).

Hardware Support for Extracting More Parallelism

The effectiveness of the compiler optimizations is limited when the behavior of

branches is not predictable. Here we show some ways of modifying the hardware to

exploit ILP (Kenneth E. Batcher, 2002).

Conditional Instructions

A compiler can use conditional instructions for speculative code as long as the

exception behavior of a program is not changed. When the condition is false, a

conditional instruction should act like a true no operation (nop) and never cause an

exception. When the condition is true, exceptions are allowed. Conditional instructions

are helpful for implementing short alternative control flows. Control dependencies are

replaced by data dependencies, which makes scheduling easier. The following factors

limit the utility of conditional instructions (Kenneth E. Batcher, 2002).

• Time is still consumed when the condition is false. This is important when

implementing a long alternative control flow: the same time is always consumed

whether control goes through the alternative or not.

• They only test one condition. Additional instructions are required to test the

AND or OR of several conditions.

• Only a few instructions can be made conditional without impacting clock rate.

www.manaraa.com

 36

Compiler Speculation with Hardware Support

There are two constraints that should be satisfied when instructions are moved.

Whenever a compiler speculates it violates the constraint, where an instruction that's

control dependent on a branch can't be moved to a place where it is no longer control

dependent on that branch. The constraint can be violated as long as the program still

runs correctly: that is, the exception behavior and the data flow of the program are

preserved (Kenneth E. Batcher, 2002).

Preserving the exception behavior of a program imposes a severe restriction on

the amount of speculation a compiler can perform. In particular, all memory reference

instructions and most Floating Point (FP) instructions can cause exceptions so a

compiler can't execute any of these instructions speculatively (Kenneth E. Batcher,

2002).

Compiler speculation can be allowed to modify the exception behavior of a

program as long as the program still runs correctly. There are three methods to allow

this, so the compiler can speculate more ambitiously:

1. Hardware-Software Cooperation for Speculation: Each program-caused

exception is either resuming or terminating.

2. A resuming exception is handled in the normal way: the Operating System (OS)

trap-handler is called to fix the cause and the program is resumed with the

offending instruction. The program will still run correctly.

3. A terminating exception is handled differently: rather than terminating the

program, the program resumes with the offending instruction producing an

www.manaraa.com

 37

incorrect result. If a speculative instruction caused the terminating exception the

incorrect result is not used and the program still runs correctly.

There are two problems with this method of hardware support for compiler

speculation:

4. Speculative coding may suffer a higher frequency of resuming exceptions to

slow it down. Instead of improving performance with speculative code the net

result could be a loss in performance!

5. Bugs in code may not be visible.

This method of hardware support is only acceptable if it can be turned off so

fatal errors always terminate programs. Every programmer should use this hardware

mode to thoroughly debug a non-speculative machine version of the source code before

compiling a speculative machine version (Kenneth E. Batcher, 2002).

• Speculation with Poison Bits: Poison bits make code bugs more visible. A bit is

added to each machine instruction to flag it as speculative or non-speculative.

1. A terminating exception caused by a non-speculative instruction is always fatal

and the program is terminated with a fatal error message.

2. An exception caused by a speculative instruction is never fatal and the program

continues: an exception that's normally terminating is changed to a resuming

exception with the offending instruction producing a bad result.

3. To flag a bad result, a poison bit is added to every register. Only speculative

instructions are allowed to use poisoned register values: a poisoned source

operand produces a poisoned result. If a non-speculative instruction tries to use

a poisoned register value, a terminating exception occurs. Store-to-memory

www.manaraa.com

 38

instructions are always non-speculative so memory can neither store poisoned

values nor any values at poisoned addresses.

4. One complication with this method of hardware support is when the OS saves

and restores registers: poison bits must also be saved and restored.

• Speculative Instructions with Renaming: With the two previous methods the

compiler has to rename registers whenever scheduling creates WAR and/or

WAW hazards: ambitious speculation may use up too many registers. An

alternative is to provide buffering and renaming in hardware much as

Tomasulo's algorithm does.

1. An instruction that's control dependent on a branch is said to be boosted if the

compiler schedules it to execute before the branch. A boosted instruction is

flagged to indicate whether the compiler is assuming the branch will be taken or

the branch will be untaken. The result of a boosted instruction can be forwarded

to other boosted instructions (assuming the same branch outcome) but it is not

stored in a register until the actual branch outcome is known: if the branch

outcome agrees with the assumption the result of a boosted instruction is stored

in the destination register; otherwise the result is ignored (Kenneth E. Batcher,

2002).

2. The method can be extended to allow boosting instructions across multiple

branches.

Hardware-Based Speculation

www.manaraa.com

 39

Hardware-based speculation is complex and requires substantial hardware

resources but it has some advantages over compiler-based speculation (Kenneth E.

Batcher, 2002):

1. Hardware can disambiguate memory references to allow greater speculation.

2. Hardware branch-prediction can be more accurate than compiler branch-

prediction.

3. Precise exceptions are easier to generate.

4. No compensating or bookkeeping code is required.

The basic idea is simple: let instructions execute in any order but don't commit

their results to registers or memory until it's safe to do so.

Advantages of VLIW (Wen-mei W. Hwu. 1999):

� No runtime dependence checks against previously or simultaneously issued

operations

� No runtime scheduling decisions.

The disadvantages can be summarized as:

� No tolerance for different or variable latencies.

� No object code compatibility

� No tolerance for a difference in the set of functional units (Wen-mei W. Hwu.

1999).

A conventional sequential program has a Unit Assumed Latency (UAL). The

semantics of the program are understood by assuming each instruction is completed

www.manaraa.com

 40

before the next one is issued. There is another scheduling model, which is called Non-

UAL (NUAL) scheduling models. It consists of two models (Wen-mei W. Hwu., 1999):

1. Equals (EQ) Model

o Each operation takes exactly its specified latency i.e. the destination register

will not be written until latency number of cycles.

o Produce slightly shorter schedules due to register reuse

2. Less-Than-or-Equals (LEQ) Model

o An operation may take than or equal to its specified latency i.e. the destination

register can be written any time from issue to latency cycles

o Simplifies the implementation of precise interrupts Provides binary

compatibility when latencies are reduced

VLIW as an Architecture

1. Defining attributes

o NUAL: non-unit assumed latencies.

o Multiop: multiple simultaneously issueable operations per instruction:

a. No flow dependencies between these Operations.

b. Output and anti-dependencies specified by the assumed latencies

2. Advantages over a sequential architecture (Uniop, UAL)

a. Explicitly provides independence information in the program

b. No runtime dependence checks against previously or simultaneously

issued operations

www.manaraa.com

 41

c. Economy of register usage

Permits an especially simple mechanism for object code compatibility (Wen-mei W.

Hwu, 1999).

www.manaraa.com

 42

2.8 Summary

Four major subjects are discussed in this chapter: the pipelining with, the

interrupts as a general concept, then the concept of the precise interrupts and all related

difficulties and concepts are fully pointed out. The concept of the imprecise interrupts

was stated in brief. Finally, the Tomasulo’s algorithm and register renaming are

discussed.

www.manaraa.com

3. SCHEMES FOR HANDLING PRECISE INTERRUPTS

IN PIPELINING SYSYEMS

3.1 Preface

This chapter presents different schemes for handling precise interrupts in pipelining

systems that is used throughout the thesis.

There are several solutions to the problem of the study. The following are the

main solutions in general.

First Solution:

• Ignore the problem (imprecise exceptions):

1. This may be fast and easy, but it's difficult to debug programs without precise

exceptions.

• Many modern CPUs, i.e. DEC Alpha 21064, IBM Power-1 and MIPS R800,

provide a precise mode that allows only a single outstanding Floating Point (FP)

instruction at any time.

1. This mode is much slower than the imprecise mode, but it makes debugging

possible.

Second Solution:

• Buffer the results and delay commitment:

www.manaraa.com

43

1. In this case, the CPU doesn't actually make any state (register or memory) changes

until the instruction is guaranteed to finish.

2. This becomes difficult when the difference in running time among operations is large.

• Lots of intermediate results have to be buffered (and forwarded, if necessary).

Variations of the second solution:

• History file:

1. This technique saves the original values of the registers that have been changed

recently.

2. If an exception occurs, the original values can be retrieved from this cache.

3. Note that the file has to have enough entries for one register modification per

cycle for the longest possible instruction.

4. Similar to the solution used for the VAX for auto-increment and auto-decrement

addressing.

• Future file:

1. This method stores the newer values for registers.

2. When all earlier instructions have completed, the main register file is updated

from the future file.

3. On an exception, the main register file has the precise values for the interrupted

state.

www.manaraa.com

44

Third Solution:

• Keep enough information for the trap handler to create a precise

sequence for the exception:

1. The instructions in the pipeline and the corresponding PCs must be saved.

2. After the exception, the software finishes any instructions that precede the

latest instruction, which is completed.

3. Technique is used in the SPARC architecture.

Fourth Solution:

• Allow instruction issue only if it is known that all previous instructions will

complete without causing an exception.

1. The floating point functional units must determine if an exception is possible

early in the EX stage, first couple clocks, in order to prevent the following

instructions from completing.

2. Sometimes it requires stalling the pipeline in order to maintain precise

interrupts.

3. The R4000 and Pentium solution.

3.2 In-order completion

In-order execution does not fully utilize all functional parts of a CPU. The rule

of in-order execution prohibits that subsequent instructions overtake previous

instructions. Clearly, if instructions completed in the order they were issued, we could

handle an interrupting instruction by allowing it to reach its last pipeline stage and then

www.manaraa.com

45

preventing the completion of all subsequent instructions. This scheme guarantee precise

state. The original MIPS implementation used a similar scheme (Mayan, 1996).

Instructions modify the process state only when all previously issued

instructions are known to be free of exceptions. This strategy is most easily

implemented when pipeline delays in the parallel functional units are fixed. That is, they

do not depend on the operands, only on the function. Thus, the result bus can be

reserved at the time of issue. However, forcing in-order completion can degrade

performance (Mayan, 1996).

3.3 Reorder Buffer Scheme

 The reorder buffer is a FIFO (First In First Out) queue that is placed between

the output of the functional units and the write-back port of the register file. It keeps the

register file in a precise state. The entries of the reorder buffer are en-queued when

instructions are issued, each entry contains the following fields: destination register,

result value, PC, interrupt status, valid. Instructions are removed from the head of the

queue when they have valid result values after they have written back their results.

Exceptions are checked for an instruction when the instruction reaches the head of the

queue. If an instruction causes an exception all entries behind it in the reorder buffer are

discarded and do not write back their results. Bypassing the result values from the

reorder buffer is required for maximum performance.

The reorder buffer was developed to solve the problem that, in many pipelined

computers even those with in-order instruction issue, execution results are frequently

produced out-of-order. For example, this happens when functional units have different

latencies. This is what Smith and Pleszkun mean by “pipelined” processors: in-order

www.manaraa.com

46

pipes with functional units that have different latencies. In previous machines, results

were typically written to the register file as soon as they were produced, and if the

results were produced out-of-order, they could therefore update machine state out-of-

order. Such an organization causes problems in the case of handling precise interrupts,

during which the machine state is required to reflect that of a sequential machine with

in-order instruction completion, otherwise the interrupt is not considered “precise”.

Smith and Pleszkun solve the problem by providing a mechanism to allow instructions

that generate results out-of-order to be completed in-order. Changes to the state of the

machine (register file, memory system) are limited to the time of instruction

completion, which is handled in program order, and therefore the state of the machine

always reflects that of a sequential implementation (UMD, 2000).

The fundamental idea is coupling of instruction execution and instruction

completion. Whereas in previous pipeline organizations execution and completion could

be treated as an atomic multi-cycle operation, the reorder buffer separates out the

concept of instruction completion as a phase of the instruction life cycle that may or

may not happen on the cycle following the generation of results. Thus, the reorder

buffer behaves like a holding tank for instructions while they are in the process of being

executed (including decode, operand fetch, execution by an ALU, possible memory

access, and write-back to the register file). It is easy to imagine many possible structures

that would perform such a function (UMD, 2000).

Thus, the reorder buffer keeps the original program order of the instructions

after instruction issue and allows result serialization during the retire stage. State bits

are stored if an instruction is on a speculative path, and when the branch is resolved, if

the instruction is on a correct path or must be discarded. When an instruction completes,

www.manaraa.com

47

the state is marked in its entry. Exceptions are marked in the reorder buffer entry of the

triggering instruction. Reorder buffer entries are allocate in the first issue stage and de-

allocated serially when the instruction retires.

When an exception is detected, a flag in the instructions’ reorder buffer entry is

set indicating the exceptional status. Delaying the handling of the exception ensures that

the instruction didn’t execute along a speculative path. While the instructions are being

committed, the exception flag of the instruction is checked (UMD, 2000).

To implement out-of-order, issue requires a buffer, or instruction window

between decoder and functional units, as shown in figure 5.5, which is discussed in.

Here, the Reorder Buffer is combined with the Tomasulo’s algorithm. The Advantages

of Tomasulo’s Algorithm:

1. Distribution of hazard detection and control logic (Because of distributed

reservation stations and Common Data Bus (CDB): Multiple instructions

waiting on a single operand can all start execution as soon as the operand is

broadcasted on the common data bus).

2. Elimination of stalls for WAW and WAR hazards (Because of register

renaming and storing operands into reservation stations as soon as available).

But how do we implement this instruction window? We have two choices:

1. Centralized Window: Buffer every instruction for every functional unit in a

common window.

2. Reservation Stations (RSs): Distribute individual buffers to each of the FUs.

www.manaraa.com

48

The number of instructions found in the instruction window at any given time is

greater than the maximum fetch and decode rate. Potentially, we can issue more

instructions in a given cycle than this maximum fetch/decode rate. In general, the

maximum number of instructions issued in one cycle can be significantly higher than

the average instruction execution rate (e.g. more than a factor of 2).

There are some implications of this, some are:

� To maximize performance, we need to support a high instruction issue rate.

� To do this requires simultaneous communication of much operand value to

different functional units. Each instruction issued must be accompanied by all of

its required operands.

� With a central window, this busing is routed to all functional units.

� With a distributed instruction window (i.e. reservation stations) the window is

filled at the average instruction execution rate not the peak rate.

2
1 1 3 2

Complete out-

of-order

Retire: Update state in-order:

Precise

Register File

Reservation

Station

Functional

Unit

Register

File

Reservation

Station

Functional

Unit

R
O

B

Update state out-of-order:

Imprecise

New Bypass

Figure 3.1. Precise Tomasulo Pipeline with ROB

+

www.manaraa.com

49

We should note that, in general, if the window is partitioned using RSs, the total

size of the instruction window must be larger than if it were centralized in order to

support the same amount of look-ahead. Multiple issues and forms of reservation

stations are shown in figure 3.2.

Another remarkable point about reservation station; is that reservation stations

potentially reduce operand bus routing. Because reservation stations are distributed,

they can more easily support the maximum instruction issue rate. In a given cycle, each

RS may issue an instruction to an FU since the operands come from local reservation

stations. Also, each FU can have a different number of reservation stations assigned to

it.

3.4 Reorder Buffer with Forwarding (Bypass) paths

A new mechanism for enforcing RAW dependencies is formed; this is similar to

the model presented by Sohi and Vajapeyam (David ,1997).

When an instruction is being issued, the reorder buffer is searched for entries

whose destination register field corresponds to a source operand that the instruction

needs. If no entry in the reorder buffer matches the register number then the result has

already reached the register file and the operand is read from there. If one match is

found the instruction issue may be stalled until the reorder buffer entry contains a valid

result, whereupon it is used as the operand for the instruction being issued (David

,1997).

a. Single, shared queue

From instruction

dispatch
To all Units

www.manaraa.com

50

(b) Multiple queues, one per instruction type.

c. Multiple reservation station; one per instruction type.

Figure 3.2. Forms of Reservation Station

In order for results to be used early, bypass path may be provided from the

entries in the reorder buffer to the register file output latches as shown in figure 4.8.

These paths allow data being held in the reorder buffer to be used in place of register

data. The implementation of this method requires comparator for each reorder stage and

operand designator. If an operand register designator of an instruction being checked for

issue matches a register designator in the reorder buffer, then a multiplexer is set to gate

the data from the reorder buffer to the register output latch. In the absence of other issue

blockage conditions, the instruction is allowed to be issued, and the data from the

reorder is used prior to being written into the register file (James et al., 1988).

There may be bypass paths form some or all of the reorder buffer entries. If

multiple bypass paths exist, it is possible for more than one destination entry in the

From

Instruction

Dispatch

To load/store unit

To integer unit

To floating point unit

From

Instruction

Dispatch

To load/store unit

To integer unit

To floating point

 Unit

www.manaraa.com

51

reorder buffer to correspond to a single register. Clearly only the latest reorder buffer

entry that corresponds to an operand designator should generate a bypass path to the

register output latch. To prevent multiple bypassing of the same register, when an

instruction is placed in the reorder buffer, any entries waiting the same destination

register designator must be inhibited from matching a bypass check (James et al., 1988).

3.5 Future File Scheme

Typically, these and other mechanisms that perform the function of ensuring in-

order commitment of machine state are all called by the microprocessor design

community “reorder buffers” whether the description is technically accurate or not

(UMD, 2000).

Reorder buffer holds only instruction execution states (results are in rename

registers). Johnson’s description of a reorder buffer in combination with a so- called

future file. The future file is similar to the set of rename registers that are separated from

the architectural registers. In contrast, Smith and Pleskun described a reorder buffer in

combination with a future file, whereby the reorder buffer and the future file receive and

store results at the same time. Other reorder buffer type: The reorder buffer holds the

result values of completed instructions instead of rename registers. Moreover the

instruction window can be combined with the reorder buffer to a single buffer unit

(UMD, 2000).

The future file is a mechanism described by Smith and Pleszkun. There is

another modified version of it, which is described by Johnson. It consists of a model

similar to the simple reorder buffer with the addition of an extra register file known as

the future file. As in the simple reorder buffer, the reorder buffer holds look-ahead state

www.manaraa.com

52

and the register bank hold in-order state. In normal operation the future file holds the

architectural state, however upon recovery from exception the architectural state is

formed by a combination of the future file and the register bank (David, 1997).

3.6 History Buffer Scheme

The history buffer is one of three mechanisms proposed by Smith and Pleszkun

to handle precise interrupts in pipelined processors. Like check pointing mechanisms,

the history buffer maintains some state to be restored when an exception is encountered.

However, unlike check pointing only the part of the state, which has changed recently,

is stored.

www.manaraa.com

53

3.7 Summary

 The main five handling schemes for the precise interrupts in pipelining systems

were introduced in this chapter. The first method is the In-Order-Completion of

instructions. The second method is the Reorder Buffer, the same structure of this

Reorder Buffer but with the forwarding (Bypassing) paths is the third method. The

fourth and fifth methods are the Future File and the History Buffer respectively.

Finally, Implementing precise interrupts through in-order completion degrades

performance by reducing the amount of pipelining possible. Implementing precise

interrupts with out-of-order completion requires significant amount of hardware. Worse,

the extra hardware can add to the machine’s cycle time, thus degrading performance. To

reduce the costs of interrupt handling with out-of-order completion, we must consider

the requirement of the different classes of interrupts (Mayan, 1996).

www.manaraa.com

4. IMPLEMENTATION OF IN ORDER COMPLETION

In this chapter, we introduce the architecture and the structure of the system,

which we use. The algorithm of the In-Order Completion scheme is implemented and

analyzed in this chapter.

4.1 Architectural Model

For describing the various techniques, an architectural model is chosen as

declared in (James et al., 1988). It is a register-register architecture where all memory

accesses are through registers and all functional operations involve registers. In this

respect, it bears some similarity to the CDC and Cray architectures. The process state in

this architectural model consists of the program counter, the general-purpose registers,

and main memory. The architecture is simple, has a minimal amount of process state,

can be easily pipelined, and can be implemented straightforward with parallel functional

units like the CDC and Cray architectures (James et al., 1988).

In our model as illustrated, we emphasize scalar architectures (as opposed to

vector architectures) because of their applicability to a wider range of machines (James

et al., 1988).

Figure 4.1 shows the parallel pipelined implementation for this simple

architecture. It uses an instruction fetch/decode pipeline with processing of instructions

in order. The final stage of the fetch/decode pipeline is an issue register where all

register interlock conditions are checked. Here the memory access function is

implemented as one of the functional units. The registers of the operands are read at the

time an instruction is issued. There is a single result bus that returns results to the

www.manaraa.com

55

register file. This bus may be reserved at the time an instruction is issued or when an

instruction is approaching completion. A new instruction can be issued every clock

period in the absence of register or result bus conflicts.

Figure 4.1. Pipelined Implementation of our architectural model (James et al., 1988).

Table 4.1. Sample1 of code used in the work.

State. No. Statement Comments Execution time

0 R1� 0 Init. Loop index 2 clock periods

1 R0 � 0 Init. Loop Counter 2 clock periods

2 R5 � 1 Loop Inc. Value 2 clock periods

3 R7 � 100 Maximum Loop Count 2 clock periods

4 Loop: R1� (R2 +A) Load A(I) 11 clock periods

5 R3 � (R2 +B) Load B(I) 11 clock periods

6 R4 � R1 + fR3 Floating Add 6 clock periods

7 R0 � R0 +R5 Inc. Loop count 2 clock periods

8 (R0 + C) � R4 Store C (I) 11 clock periods

9 R2 � R2 +R5 Inc. Loop index 2 clock periods

10 P = Loop: R0 !=R7 Cond. Branch not equal

Memory Access

Functional Unit 1

 ….

 ….

 ….

 ….

Register

File

Instruction

Fetch/Decode Functional Unit 2

.

.

.

Issu
e

Result Bus

www.manaraa.com

56

Table 4.2. Sample2 of code used in the work.

State. No. Statement Execution time

A LD F6, 34(R2) 1 clock period

B LD F2, 45(R3) 1 clock period

C MULTD F0, F2, F4 10 clock periods

D SUBD F8, F6, F2 1 clock period

E DIVD F10, F0, F6 40 clock periods

F ADDD F6, F8, F2 1 clock period

To demonstrate how an imprecise process state may occur in our architectural

model, consider the section of code mentioned in table 4.1, which sums the elements of

array A and B into array C. Another sample of code used in the work is introduced in

table 4.2.

4.2 Interrupts prior to Instruction Issue

Before preceding with the various precise interrupts methods, I would like to

first consider interrupts that can be handled the same way by all methods, these are

interrupt that may occur prior to instruction issue.

As the architectural model indicates, instructions are queued to be issued in

sequence. This simplifies the handling of interrupts since there is no change can be

applied to the process state before instructions have been issued.

There are many such interrupts, such as, privileged instruction faults and

unimplemented instructions; others may include external interrupts. These exceptions

can be checked at the issue stage.

When such an exception occurs, this can be handled as follows:

1. Instruction issue is halted.

www.manaraa.com

57

2. A wait state is forced until all previously issued instructions have been

completed.

3. After they have completed, the process is in a precise state (which includes the

precise contents of the registers, the program counter, conditional registers,

index registers, and that portion of the main memory being used for data).

4. The precise instruction is the one whose program counter value being held in the

issue register. This makes the memory and the program counter in a consistent

state.

There are several mechanisms for implementing precise interrupts on pipelining

implementations. As we have indicated, the main source of difficulty is the order of the

completion, not the order of issue. For simplicity, unless otherwise stated, we assume

that instructions are issued in order- that is, in their program order (Mayan, 1996). So,

our concentration will be on exceptions occurring after the instructions are issued.

4.3 In-Order Instruction Completion

4.3.1 Scheme Description

With this scheme, as described in section 3.2, instructions modify the process

state only when all previously issued instructions are known to be free of exceptions as

illustrated in the previous section.

There is logic on the result bus that checks for exception conditions in

instructions, as they complete. This control information identifies the functional unit

that will supply the result and the destination register of the result. It is also marked

“valid” with a validity bit. Each clock period, the control information is shifted down

one stage toward stage one. When it reaches stage one, it is used during the next clock

www.manaraa.com

58

period to control the result bus so that the functional unit result is placed in the correct

result register.

The Result Shift Register is shown in Table 4.3. Here the stages are labeled 1

through n, where n is the length of the longest functional unit pipeline. An instruction

that takes i clock period reserves stage i of the result shift register at the time it is issued.

If the stage already contains valid control information, then the issue is held until the

next clock period, and stage i is checked once again. An issuing instruction places

control information in the result shift register.

Table 4.3. Result Shift Register

Stage
Functional

Unit Source

Destination

Register

Valid

1 0

2 0

3 0

4 0

5 0

. . . .

. . . .

N 0

4.3.2 Scheme Analysis

The method basically can be used regardless of whether precise interrupts are to

be implemented or not. If we still disregard the precise interrupts. It is possible for a

short instruction to be placed in the resultant pipeline in stage i, when previously issued

instructions are in stage j, j>i. This leads to instruction finishing out of the original

program sequence. If the instruction at stage j eventually encounters an exception

condition, the interrupt will be imprecise because the instruction placed in stage i will

complete and modify the process state even though the sequential architectural model

says i does not begin until j completes.

Shift

Upward

Instruction

In stage 1

writes the

result-bus

www.manaraa.com

59

To implement precise interrupt with respect to registers using this methodology;

an issuing instruction using stage j should “reserve” stages i<=j that were not

previously reserved by other instructions. And they are loaded with null control

information, so that they do not affect the process state. This guarantees that instruction-

modifying registers finish in order.

Table 4.4. Result Shift Register including the program counter to implement

precise interrupts.

 (a) Sample 1 (James et al., 1988).

Stage
Functional

Unit Source

Destination

Register
Valid

Program

Counter
1 0

2 0

3 0

 4 0

5 FLPT ADD 4 1 6

.

.

N 0

 (b) Sample 2

Stage FU/OP
Destination

Register
Valid

Program

Counter

1

2 LD (1) 0 A

3

4

5

6

7

8

9

10

11

12

13

14

To implement precise interrupts with respect to the program counter, the result

shift register is widened to include a field for the program counter of each instruction as

shown in table 4.4.-a. This field is filled as the instruction is issued. When an instruction

Shift

Upward

Instruction

In stage 1

writes the

result-bus

Shift

Upward

Instruction

In stage 1

writes the

result-bus

www.manaraa.com

60

with an exception condition appears at the result bus, its program counter is available

and becomes part of the saved state.

Experiments:

Many experiments were done to test the scheme in order to handle the precise

interrupts. The original functional units (FUs) used, were: Integer FU (ADDD, SUBD),

the Floating Point FU, the Load/Store FU, the MultD/DivD FU, and the Branch FU.

When we changed these FUs, we used more FUs to increase the throughput. The Integer

FU is extended to be two FUs, one for ADDD and the other to SUBD, the same then is

done to the MultD/DivD FU, it becomes MultD FU and DivD FU, the Load/Store FU

becomes one for Load and the other for Store, the Floating Point FU can be further

divided to have one for each floating point operations. The dependency hazards were

resolved fully or partially. Here are the results of the experiments done:

A- The first sample of code is applied to the approach. The results were as follows:

o The total number of shifts and tests were the same for all experiments. Fig.4.4

shows the percentage of failed to succeeded tests.

o Fig. 4.2, 4.3 show how is the number of shifts and failed tests are changed in

each experiment.

Resolving the dependencies among instructions, but still having sharp

peaks at the instructions that has RAW dependency achieves a slight

improvement.

B- The second sample of code is applied. The results were as follows:

www.manaraa.com

61

o The total number of shifts and tests were not changed in any of the experiments

done. Fig.4.6 shows the total number of tests and the percentage of failed to

succeeded tests.

o Fig. 4.5, 4.7 show how is the number of shifts and failed tests are changed after

each modification.

As we resolve dependencies among instructions, we get better

performance regarding to the number of failed tests for each Instructions, i.e.,

tests are succeeded more.

So, when there is no hazard dependency, this will give better performance to the

algorithm used. No need to change the FUs, since all instructions are issued and

executed in order, and no conjunction of instructions can occur at the FU.

The main advantages of the In Order Completion are that it is simple and easy to

be implemented. Also, it is free of any kind of dependency. The nature of instructions

and dependencies among them affect the results obtained.

www.manaraa.com

62

(a) original Code.

(b) Exchanging Instructions 6,7.

N
o
 o

f
 S

h
if

ts

fo
r

 e
ac

h

In
st

r.

Instruction Number

N
o
 o

f
 S

h
if

ts

fo

r
 e

ac
h

In

st
r.

Instruction Number

www.manaraa.com

63

(c) Reordering instructions to resolve all Dependency hazards.

(d) Loop of the original code.

N
o
 o

f
 S

h
if

ts

fo
r

 e
ac

h

In
st

r.

Instruction Number

N
o
 o

f
 S

h
if

ts
 f

o
r

 e
ac

h

In
st

r.

Instruction Number

www.manaraa.com

64

(e) Loop after resolving dependencies.

Figure 4.2. In-Order Completion. Sample 1, the number of shifts per each instruction.

(a) Original Code.

N
o
 o

f
 S

h
if

ts

fo
r

 e
ac

h

In
st

r.

Instruction Number

N
o
 o

f
 F

.
T

es
ts

fo

r
 e

ac
h

In
st

r.

Instruction Number

www.manaraa.com

65

(b) Exchanging Instructions 6,7

N
o
 o

f

F

.T
es

ts

fo

r
 e

ac
h

In

st
r.

Instruction Number

N
o
 o

f

F

.
T

es
ts

fo

r
 e

ac
h

In
st

r.

Instruction Number

www.manaraa.com

66

(c) Reordering instructions to resolve all Dependency hazards.

(d) Loop of the original code.

(e) Loop after resolving dependencies.

Figure 4.3. In-Order Completion. Sample 1, the number of failed tests per each

instruction

N
o
 o

f

F

.
T

es
ts

fo

r
 e

ac
h

In

st
r.

Instruction Number

N
o
 o

f

F

.
T

es
ts

fo

r
 e

ac
h

In
st

r.

Instruction Number

www.manaraa.com

67

Sample1:Method1

Original Instuctions

40%

No. of

Succ.

Tests

60%

No. of

Faild

Tests

1

2

Sample1:Method1

(Loop)

33%

No. of

Succ.

tests

67%

No. of

Faild

Tests

1

2

(a) Original Instruction Code (b) Original Instruction Code (Looping)

Figure 4.4. In-Order Completion. Sample 1. The number of failed tests and Succeed

tests to the Total number of tests.

(a) Original Code.

N
o
 o

f

S
h
if

ts
 f

o
r

 e
ac

h

In
st

r.

Instruction Number

www.manaraa.com

68

(b) Changing FUs.

(c) Reordering instructions to resolve all Dependency hazards.

N
o
 o

f

S

h
if

ts
 f

o
r

 e
ac

h

In

st
r.

Instruction Number

N
o
 o

f

S
h
if

ts
 f

o
r

 e
ac

h

In
st

r.

Instruction Number

www.manaraa.com

69

(d) Reordering instructions to resolve Dependency and Change

FUs.

Figure 4.5. In-Order Completion. Sample 2. The number of shifts per each instruction.

Sample2:Method1

33%

Succ.

Tests
67%

Faild

Tests
1

2

Figure 4.6. In-Order Completion. Sample2. The number of failed tests and Succeed tests

to the Total number of tests.

N
o
 o

f

S
h
if

ts
 f

o
r

 e
ac

h

In
st

r.

Instruction Number

www.manaraa.com

70

(a) Original Code.

(b) Changing FUs.

N
o
 o

f

F
.

T
es

ts
 f

o
r

 e
ac

h

In
st

r.

Instruction Number

N
o
 o

f

F

.
T

es
ts

 f
o
r

ea

ch

In

st
r.

Instruction Number

www.manaraa.com

71

(c) Reordering instructions to resolve all Dependency hazards.

(d) Reordering Instructions to resolve dependency and Change FUs.

Figure 4.7. In-Order Completion. Sample 2, the number of Failed Tests per each

instruction.

N
o
 o

f

F
.

T
es

ts

fo

r
 e

ac
h

In
st

r.

Instruction Number

N
o
 o

f

F
.

T
es

ts
 f

o
r

 e
ac

h

In
st

r.

Instruction Number

www.manaraa.com

72

The scheme has the following disadvantages:

1. Fast instructions may sometimes get held up at the issue register even though

they have no dependencies and would otherwise issue.

2. Long program execution time because of the held of instructions at the issue

stage.

www.manaraa.com

73

4.4 Summary

The architectural model, and the pipelined performance analysis were discussed

in this chapter. Two interrupt schemes were studied which are: the interrupts prior to

instruction issue, and the In Order Completion, which is implemented and analyzed.

The first scheme acts upon exceptional conditions as soon as they are detected, thereby

saving a few cycles per interrupt, but it must also handle situations where an older

instruction causes an interrupt after a newer instruction causes its own. In this case, the

pipeline would be in the process of handling the newer instruction’s exception when the

older instruction’s exception is detected. The pipeline must abort the interrupt-handler-

in-progress and redirect control to handle the exception that was detected next but

should be handled first (in program order). Thus, the first scheme requires a bit more

logic.

www.manaraa.com

Register

bank

Operands Functional

Unit

Reorder

Buffer

Results

Results

5. Implementation of Out of Order Completion

In this chapter, we introduce the Out- Of -Order schemes; the algorithms and the

results are implemented and then fully analyzed.

5.1 Reorder Buffer (Basic Reorder Buffer)

5.1.1 Scheme Description

The reorder buffer is a mechanism suggested by Smith and Pleszkun. The

structure of a system with a reorder buffer is shown in figure 5.1. The reorder buffer is a

queue holding values returned from the functional units (David, 1997).

Figure 5.1. Processor organization with a reorder buffer.

The reorder buffer is implemented as a circular FIFO buffer. During instruction

issue, a space is reserved in the reorder buffer into which the current program counter is

written together with the destination register identifier. Results returning from the

functional units write their results into the allocated spaces in the reorder buffer rather

than writing the results directly into the register bank (David, 1997).

www.manaraa.com

74

Furthermore, each reorder buffer entry has a valid bit. The bit indicates that the

result of the instruction is in the reorder buffer entry. A reorder buffer entry with active

valid bit is called valid reorder buffer entry.

The reorder buffer is accessed using two pointers, the head and tail pointers. We

denote the value of the head pointer during cycle T by ROBhead T, and the value of the

tail pointer by ROBtail T. Instructions are put in the ROB entry ROBtail points to, and

removed from the entry ROBhead points to. After an instruction is put in the ROB, the

ROBtail pointer is increased. After an instruction is removed from the ROB, the

ROBhead pointer is increased. The pointers wrap-around if they reach the end of the

ROB. This is illustrated in figure 5.2.

0

1

2 I1

3 I2

4 I3

5 I4

6

7
Figure 5.2. Illustration of the reorder buffer pointers

Table 5.1. RSR File used in ROB Scheme

 (a) RSR File – sample 1

Stage
Functional Unit

Source
Valid TAG

1 0

2 Integer ADD 1 5

3 0

4 0

5 FLPT ADD 1 4

. . . .

N 0

ROBhead

ROBtail

www.manaraa.com

75

 (b) RSR File– sample 2

Stage FU/OP
ROB

TAG
Valid

Program

Counter

1

2 LD (1) 2 A

3 LD (2) 3 B

4

5 SUBD 5 D

6

7

8

9 ADDD 7 F

10

11

12

13 MULTD 4 C

14

The Result Shift Register (RSR) is shown in Table 5.1. The Reorder Buffer (ROB) is

shown in figure Table 5.2.

Table 5.2. ROB File used in ROB scheme.

(a) ROB, sample 1

Entry

Number

Des.

Register
Result Exceptions Valid PC

3

4 4 0 6

5 0 0 7

: : : : : :

: : : : : :

: : : : : :

 (b) ROB, sample 2

Entry

Number

Des.

Register
Result Exceptions Valid PC

3

4 F8 NO √ A

5 F2 NO √ B

6 F0 C

7 F8 √ D

8 F10 E

9 F6 √ F

10

www.manaraa.com

76

5.1.2 ROB Scheme Analysis

To Implement the ROB, follow these steps

- Initialization:

1. Initialize both ROB and RSR

2. Both tail and head reserved at the first entry of ROB.

- Instruction Issue:

1. The next available ROB (Entry) is pointed by tail.

2. ROB Entry is reserved to the issuing instruction.

3. RSR (TAG) = ROB (Entry), is placed in RSR along with the control

information of the instructions.

4. Tail pointer is incremented.

- Instruction Completion:

4. Write value into ROB entry specified by the RSR

5. DO NOT write result into the register file

6. If instruction caused an exception, mark exception bit in the ROB for offending

instruction.

7. Check instruction at the head of the ROB

� If the associated instruction is not completed, the slot remains there until it has

completed.

� Instructions can continue to be decoded until the reorder buffer is full.

� If completed, check exception bit

� If there is no fault:

www.manaraa.com

77

a. Commit state (the value is written to the register file).

b. The entry removed from the reorder buffer.

c. Advance head pointer.

8. If there is a fault associated with the value:

1. Issue is stopped in preparation for the interrupt.

2. Squash subsequent instructions in ROB.

3. All further writes into the register file are inhibited.

4. Back-up the tail pointer to the head pointer.

5. The in-order state of the register file is restored.

9. If the instruction causes an exception and software support is needed, the

hardware handles the interrupt in the following way:

1. The ROB is flushed; the exceptional PC is saved; the PC is redirected to the

appropriate handler.

2. Handler code is executed, typically with privileges enabled.

3. Once a return from interrupt instruction is executed:

a. The exceptional PC is restored

b. The program resumes execution

In this model, there are two primary sources of performance loss: While the

exception is being handled, there is no user code in the pipe, and thus no user code

executes—the application stalls for the duration of the handler: After the handler

returns control to the application, all of the flushed instructions are re-fetched and re-

executed, duplicating work that has already been done (Amer et al., 2000).

www.manaraa.com

78

Instructions are en-queued in program order and only when their operands are

available. While they are in the reorder buffer program order does not state the

sequencing of any particular events. In particular, the instructions might finish

executing out of program order.

When an instruction is successfully de-queued from the reorder buffer, its results

are committed to the machine state. At this point, the instruction is said to be retired.

While an instruction is in the process of execution, i.e. before retiring, it may cause an

exceptional condition. To ensure that such exceptions are not handled speculatively or

out-of-order, exception handling does not occur until instruction commits time. This

ensures that no previous instructions have caused as-yet un-handled exceptions.

Therefore, all exceptions are handled in program order, and no exception is handled for

an instruction that ends up and being discarded (UMD, 2000).

Experiments and Results:

Many experiments were done to test the algorithm. Two samples of code were

tested. The instructions in the two samples were repeated several times. Random

instructions with different execution times and with variable number of functional units

were tested. The same variability of FUs used in the previous chapter (In-Order

Completion), were used here. The dependency hazards were resolved fully and

partially, to test the results for each variation. Here are the results of the experiments

done:

1. The first and the second sample of code, and all their variations were applied to

the algorithm. The results were as follows:

www.manaraa.com

79

� The instructions that have hazard dependencies have sharp peaks in the

diagrams graphed for the number of failed tests for each instruction as shown

in Fig. 5.3 and 5.4. Other instructions have a constant number for the failed

tests.

� The total number of the failed tests and succeeded tests are nearly the same in

all experiments. The percentage in all cases is shown in figure Fig.5.5, Fig.

5.6.

2. The RAW dependencies are solved and this increases the number of shifts

necessary for each instruction to be shifted in order to be completely executed,

this is shown in Figure 5.5, 5.6 as a peak for resolved instructions.

(a) Original Code.

N
o
 o

f

F
.

T
es

ts

fo
r

 e
ac

h

In
st

r.

Instruction Number

www.manaraa.com

80

(b) Changing FUs.

(c) Resolve Dependency hazards (partially)

N
o
 o

f

F

.
T

es
ts

fo

r
 e

ac
h

In

st
r.

Instruction Number

N
o
 o

f

F
.
T

es
ts

fo

r
 e

ac
h

In

st
r.

Instruction Number

www.manaraa.com

81

(d) Resolve Dependency hazards (Completely)

(e) Resolving Dependencies & FUs.

Figure 5.3. ROB. Sample 1: the number of Failed Tests per each instruction.

N
o
 o

f

F
.

T
es

ts

fo
r

 e
ac

h

In
st

r.

Instruction Number

N
o
 o

f

F

.
T

es
ts

fo

r
 e

ac
h

In

st
r.

Instruction Number

www.manaraa.com

82

(a) Original Code.

(b) Changing FUs.

N
o
 o

f

F
.

T
es

ts

fo
r

 e
ac

h

In
st

r.

Instruction Number

N
o
 o

f

F
.

T
es

ts

fo
r

 e
ac

h

In
st

r.

Instruction Number

www.manaraa.com

83

(c) Resolve Dependency hazards.

(d) Resolving Dependencies and FUs.

Figure 5.4. ROB. Sample 2: the number of Failed Tests per each instruction.

N
o
 o

f

F
.

T
es

ts

fo

r
 e

ac
h

In

st
r.

Instruction Number

N
o
 o

f

F
.

T
es

ts

fo
r

 e
ac

h

In
st

r.

Instruction Number

www.manaraa.com

84

ROB= Sample1

 (Original)

Failed

Tests

67%

Succ.

Tests

29%

ROB:Sample1

(Dependencies Resolved)

Failed

Tests

66%

Succeede

d Tests

34%

(a) Original Instruction Code (b) (Resolving Dependency)

ROB: Sample1

(Original + FUs)

Failed

Tests

67%

Succeede

d Tests

33%

ROB:Sample1

 (Dep.Resolved +FUs)

Failed

Tests

66%

Succeede

d Tests

34%

(c) Original Instructions (changing FUs.) (d) Changing FUs and Resolved Dep.

Figure 5.5. ROB. Sample 1. The number of failed tests and Succeed tests to the Total

number of tests.

ROB:Sample2

(Original)

Failed

Tests

50%

Succeede

d Tests

50%

ROB:Sample2 (Dependencies

Resolved)

Failed

Tests

50%

Succeede

d Tests

50%

(a) Original Instruction Code (b) (Resolving Dependency)

ROB:Sample2

(Originl+FUs)

Failed

Tests

54%

Succeede

d Tests

46%

ROB:Sample2

(Reseloved DEpendencies+FUs)

Failed

Tests

54%

Succeede

d Tests

46%

(c) Original Instructions (changing FUs.) (d) Changing FUs & Resolving

Dependencies

Figure 5.6. ROB. Sample 2. The number of failed tests and Succeed tests to the Total

number of tests.

www.manaraa.com

85

3. As the size of the ROB is changed, different results can be achieved. The total

number of tests, the number of failed tests, and the number of shifts at each

instruction all increased as the size of the ROB is decreased until we reach to a

stable and uniform results regardless of any further expansion. We started with

the size of 1 to the size, which is of the RSR. The results can be shown in fig.

5.7. We know the size of both RSR and ROB depends on many factors

regarding to the complexity, logic control circuits, and the hardware components

in the processor. If the reorder buffer is too small the issue stage will stall

waiting for a space, leading to performance loss. But, if we increase it supposing

better performance by not having instructions stopped from issuing because of

not having empty entries in the ROB, this seems not to have better performance.

(a) The Total number of tests as the size of ROB changes:

Sample 1

T
o
ta

l
 N

o
.
 o

f
 T

es
ts

Instruction Number

www.manaraa.com

86

(b) The number of failed tests as the size of ROB changes: Sample 1

(c) The number of shifts as the size of ROB changes: Sample 1

T
o
ta

l
 N

o
.

 o
f

 S
h
if

ts

Instruction Number

T
o
ta

l
 N

o
.
 o

f
 S

h
if

ts

Instruction Number

www.manaraa.com

87

(d) The Total number of tests as the size of ROB changes: Sample 2

(e) The number of failed tests as the size of ROB changes: Sample 2

T
o
ta

l
 N

o
.
 o

f
 S

h
if

ts

Instruction Number

T
o
ta

l
 N

o
.
 o

f
 S

h
if

ts

Instruction Number

www.manaraa.com

88

(f) The number of shifts as the size of ROB changes: Sample 1

Figure 5.7. ROB. After increasing the size of the ROB.

4. As the time to detect an exception increases, so does the number of instructions

that will be re-fetched and re-executed. Clearly, the overhead of taking an

interrupt in a modern processor core scales with the following, where each of

these is on a growing trend:

� The size of the reorder buffer.

� Pipeline depth.

� Issue-width (Amer et al., 2000).

5. As operands are read from the register file the performance degradation due to

RAW dependencies is increased since it is necessary to wait for the in-order

state to be resolved as results drain into the register bank (David, 1997).

6. We can decrease the time that instructions waited for committing the results by

taking the most recent entry for a register from either the register file or the

T
o
ta

l
 N

o
.

 o
f

 S
h
if

ts

Instruction Number

www.manaraa.com

89

reorder buffer. So, when using the Reorder Buffer, we may have two variations:

either to have:

• Operands must be obtained though the register file. Or

• Operands can be read directly out of the reorder buffer itself if the latest copy of

a register value is present in the result portion of a reorder buffer entry holding

an instruction that has finished executing but has not yet written its result to the

register file.

Now we can conclude the following points to be the Reorder Buffer main

disadvantages:

A. It suffers a performance penalty.

B. The computed result that is generated out of order is held in the reorder buffer

until previous instructions, finishing later, have updated the register file.

C. An instruction dependent on a result being held in the reorder buffer cannot be

issued until the result has been written into the register file.

D. The effect on RAW dependencies.

So, the key features of the reorder buffer can be summarized as follows:

• Instructions complete out of order (overlap execution of instructions in buffer).

• Commit in order.

• Consider interrupts at any instruction at commit point, if committing instruction

interrupts, squash all later instructions.

Finally, as the electronic fabrication of the components affect the speed and the

bandwidth of the processing; at UC Irvine, researchers have been designing a

www.manaraa.com

90

superscalar architecture called SDSP (Superscalar Digital Signal Processors). One of the

main components of the design is the scheduling unit, which consists of an instruction

window, a reorder buffer, and a register file. It outperforms the previously published

reorder buffer in several features. First, the new design decodes four instructions instead

of eight. Secondly, the current design runs at 100 MHz as opposed to 20 MHz, using a

smaller, three metal technologies. Thirdly, instead of a current bit cell, a look up array is

used to dynamically determine the most current entry. This has performance benefits in

handling mispredicted branches, since selected entries may be invalidated. Finally, the

size of all cells was reduced dramatically by reducing the number of transistors per cell

and by combining the shift and storage portions of each cell. But, we should note that

the associative lookup could be expensive, especially when we must access the most

recent entry for a particular register.

5.2 Reorder Buffer with Bypassing

5.2.1 Scheme Description

One of the primary disadvantages of the reorder buffer described above is its

effect on RAW dependencies. This effect can be reduced (or removed) by adding

forwarding paths from the reorder buffer around the register bank as shown in figure 5.8

(David, 1997).

When an instruction is being issued, the reorder buffer is searched for entries

whose destination register field corresponds to a source operand that the instruction

needs. If no entry in the reorder buffer matches the register number then the result has

already reached the register file and the operand is read from there.

www.manaraa.com

91

(a)

(b)

Figure 5.8. Processor organization with a reorder buffer with forwarding

In order for results to be used early, bypass paths may be provided from the

entries in the reorder buffer to the register file output latches as shown in figure 5.9.

These paths allow data being held in the reorder buffer to be used in place of register

data. If one match is found the instruction issue may be stalled until the reorder buffer

entry contains a valid result, whereupon it is used as the operand for the instruction

being issued (David, 1997).

Figure 5.9. Reorder Buffer method with Bypasses.

Register File

Comparator

Bypass Network

Reorder Buffer
Control

Result Shift

Register

Result Bus

Source Data To

Functional Units

Place data in entry when

execution finished

Reserve entry at tail

when dispatched

Remove from head when

complete (commit)

Bypass together

instruction when

needed.

Operands
Results

Reorder

Buffer

Register

Bank

Comparators/

bypass logic

Functional

Units

www.manaraa.com

92

The implementation of this method requires comparator for each reorder stage

and operand designator. If an operand register designator of an instruction being

checked for issue matches a register designator in the reorder buffer, then a multiplexer

is set to gate the data from the reorder buffer to the register output latch.

5.2.2 Scheme Analysis

The same ROB algorithm is applied with some modification, which is added to

improve the pit faults of the basic method.

To Implement the ROB with Forwarding, we can follow these steps

• If instruction is completed, then the value is in ROB

• If instruction is not retired, then the value not in register file

• Dependent instruction is dispatched into window, in which the value is either:

a. Not read from register file.

b. Can’t be grabbed from result bus, i.e., Instruction is already completed!

c. Only is placed is in ROB,

• Need to read value from ROB (ROB bypass) (David, 1997).

When bypass paths are added, preciseness with respect to the memory and the

program counter is not changed from the basic method. So, the greatest disadvantages

with this method are:

o There are number of bypass comparators needed in this scheme.

o The amount of circuitry required for the multiple bypass check, while this

circuitry is conceptually simple, there is a great deal of it (James et al., 1988).

www.manaraa.com

93

As we stated above, the primary disadvantage of this mechanism is the complexity

of the logic required to test for the presence of registers in the reorder buffer. This

consists of a Content Addressable Memory (CAM) whose size increases with the

number of entries in the buffer and the number of operands that are forwarded. The

comparison is complicated by the need to select the latest version of a register if

multiple matches are found.

The main advantage of the reorder buffer with forwarding is that in addition to

providing a mechanism for exception handling it also resolves RAW and WAW

dependencies (David, 1997). When using ROB with bypassing, if there is a large set of

physical registers, ROB allows detection of when to free a physical register. Its handling

of WAW dependencies can be seen to be a form of register renaming. Effectively each

entry in the buffer is another register, and multiple versions of each register may be

presented in the buffer at any time.

The buffer reorders values so that where there are WAW dependencies the values

are written back to the register bank in the correct order, and the search mechanism

ensures that instructions which are issued read the most recently allocated version of

registers rather than the most recently completed version.

5.3 The History Buffer (HB)

5.3.1 Scheme Description:

The history buffer maintains some state to be restored when an exception is

encountered, only the part of the state, which has changed recently, is stored.

www.manaraa.com

94

A history buffer is a FIFO, to which every instruction is added when it is

fetched. When the instruction writes to the register file, the value it overwrites is saved

in with it. Instructions are removed from the top of the history buffer when they are

completed. Any exception caused by an instruction is reported only when it comes to

the top of the stack. At that point, the register file values are restored by "'roll back"

basically, starting from the bottom of the buffer, all the saved register values are written

back to the register file. The destination register number and program counter are stored

in the slot and the exception and valid flags in the slot are cleared (David, 1997).

(a)

(b)

Figure 5.10. The basic structure of a system with a history buffer

R e g is te r F i l e

H i s t o r y B u f f e r

F r o m A L U s

E x c e p t i o n
R o l l b a c k

T o A L U s

O l d R e g i s t e r

C o n te n t s

Register Bank

Operands
Functional

Units

Values for

Exception

Recovery

History

Buffer

Old

values

T
A

G

Valid Exception

Bits Result Bus

www.manaraa.com

95

Figure 5.10 shows the basic structure of a system with a history buffer while

figure 5.11 shows entries to keep original values that can be restored after an exception

(David, 1997).

Figure 5.11. Entries to keep original values after an exception

The straightforward adaptation of a history buffer is that it will save with each

instruction the old physical register mapped by its output register. On an interrupt, both

the map and the register file are restored to their precise state by rolling back the history

buffer. Results go into register file out-of-order, but keep old state in a history buffer

until all previous operations are done. So, it requires hardware to “roll back” history

buffer on exception.

 Table 5.3. RSR, HB used in the History Buffer Scheme.

 (a) The RSR File

Stage
Functional

Unit Source

Destination

register
Valid TAG

1 0

2 Integer ADD 0 1 5

3 0

4 0

5 FLPT ADD 4 1 4

. . . .

. . . .

N 0

Used only

On Exception

Register

File

Result Shift

Register

History Buffer

Control

Result Bus

Destination

register

contents

To FUs

Source Data

www.manaraa.com

96

 (b) HB File

Entry

Number

Des.

Register

Old

Value
Exceptions Valid PC

3

4 4 40800000 0 0 6

5 0 42 0 0 7

: : : : : :

: : : : : :

: : : : : :

There is an in-order map, which satisfies the invariant that it is the same as the

current map used by the instruction at the top of the history buffer. The RSR and HB are

shown in Table 5.3.

So, the history buffer has an entry for every instruction. The information

contained in this entry includes the instruction, the physical register displaced from the

current map by the instruction when it was issued, and a bit indicating whether the

instruction has been completed or not.

5.3.2 Scheme Analysis

To Implement the HB scheme, we can follow these steps

- On issue

1. The instruction is added to bottom of the history buffer.

2. The physical register to which the instruction's output register is remapped is

also added (assuming, of course, that the instruction has an output register).

3. Copy current value of destination register to HB.

4. Increment head.

Head

Tail

www.manaraa.com

97

- On Completion:

1. Mark HB entry valid.

2. Put old value into history buffer

3. Mark exception bits.

4. When head to HB contains an entry marked valid, the entry checked for

exception:

� When an entry has exception:

1. Stall issue, waits for pipeline to empty (Flush pipeline).

2. Reload register file from the values in the history buffer (from tail to head).

3. PC at head is precise PC.

� If head of ROB has no exception, remove it from buffer.

Interrupt recovery can be facilitated by maintaining an in-order map, i.e., the

map used by the instruction at the top of the history. This can be implemented by

saving, for each instruction in the history buffer, the physical register, for which the

instruction's output register was mapped to before being remapped by the instruction.

When an instruction is retired from the top of the history buffer, the in-order map is

updated appropriately. If exceptions are reported only when the excepting instruction

reaches the top of the history buffer, the map can be restored in a single cycle by

copying the in-order map instead of rolling back the history buffer.

Experiments:

www.manaraa.com

98

The same experiments were done as in the previous experiments to test the HB

algorithm. The same two samples of code were tested with all their variations. The

results were as follows:

1. Both samples are applied to the HB algorithm. The same variations as the previous

schemes were used.

• Sharp peaks at the instructions, which have hazard dependencies, obtained as

shown clearly in Fig. 5.12 and 5.13. Other instructions have a constant number

for the failed tests for the two samples.

• Better results are achieved for the number of failed tests to the succeeded tests

as we change the FUs and having no dependency. This is shown in Fig. 5.14,

Fig. 5.15.

2. The RAW dependencies are completely solved using both the old values of the

destination registers and the updated values. This clearly increases the number of shifts

necessary for each instruction in order to complete execution. The same considerations

mentioned in the previous sections, and in section 4.6 are used here. The history buffer

does not help in the resolving of dependencies and it imposes a dependency itself. It

may be necessary to wait for the old value of the destination register at issue before it is

written into the history buffer. Thus an additional dependency resolving mechanism is

needed (David, 1997).

3. We do some experiments for increasing/decreasing the size of the HB, Figure 5.16

shows the results obtained. Increasing the size of HB makes the total number of tests

and shifts to be uniform at a certain point. When the size of the HB is the smallest, it

gives the less performance. This is because if the history buffer does not contain enough

entries, the decode and issue stages will be stalled waiting for a free space in the buffer

www.manaraa.com

99

before issuing the instruction. But increasing it seems not to have better performance.

So, the history buffer can cause a performance degradation beyond that caused by the

added complexity of the control logic.

4. In a system using a history buffer the register bank holds the architectural state, as can

be seen by the fact that the functional units access values directly from the register bank.

The history buffer is used to restore the in-order state when an exception occurs.

 So, the history buffer has the following advantages:

• Only a small part of the state needs to be restored, reducing the amount of

storage needed.

• The cost of periodically copying the whole state is removed (David, 1997).

(a) Original Code.

N
o
 o

f
 F

.
T

es
ts

fo

r
 e

ac
h

In
st

r.

Instruction Number

www.manaraa.com

100

(b) Changing FUs.

(c) Resolve Dependency hazards (partially)

N
o
 o

f
 F

.
T

es
ts

fo

r
 e

ac
h

In

st
r.

Instruction Number

N
o
 o

f
 F

.
T

es
ts

fo

r
 e

ac
h

In

st
r.

Instruction Number

www.manaraa.com

101

(d) Resolve Dependency hazards (Completely)

(e) Resolving Dependencies and FUs.

Figure 5.12. HB. Sample 1: the number of Failed Tests per each instruction.

N
o
 o

f
 F

.
T

es
ts

fo

r
 e

ac
h

In
st

r.

Instruction Number

N
o
 o

f
 F

.
T

es
ts

fo

r
 e

ac
h

In

st
r.

Instruction Number

www.manaraa.com

102

(a) Original Code.

(b) Changing FUs.

N
o
 o

f
 F

.
T

es
ts

fo

r
 e

ac
h

In
st

r.

Instruction Number

N
o
 o

f
 F

.
T

es
ts

fo

r
 e

ac
h

In
st

r.

Instruction Number

www.manaraa.com

103

(c) Resolve Dependency hazards.

(d) Resolving Dependencies and FUs.

Figure 5.13. HB. Sample 2: the number of Failed Tests per each instruction.

N
o
 o

f
 F

.
T

es
ts

fo

r
 e

ac
h

In
st

r.

Instruction Number

N
o
 o

f
 F

.
T

es
ts

fo

r
 e

ac
h

In

st
r.

Instruction Number

www.manaraa.com

104

HB: Sample1

(Original Code)

&

Dependencies resolved Completely

Succ.

Tests

29%

Faild

Tests

71%

HB:Sample1

 (Origenal+FUs)

Succ.

Tests

30%
Faild

Tests

70%

(a) Original Code & Resolving Dependency (b) Original Instructions (changing FUs.)

HB:sample1

 (Resolve Depend. +FUs)

Succ.

Tests

32% Faild

Tests

68%

(c) Resolved dependencies (partially) (d) Changing FUs & Resolving

Dependencies

Figure 5.14. HB. Sample 1. The number of failed tests and Succeed tests to the Total

number of tests.

HB:Sample 2

(Resolved Depend .)

Faild

Tests

74%

Succ.

Tests

26%

(a) Original Instruction Code (b) (Resolving Dependency)

HB:Sample2

 (Resolved Dep. +FUs)

Succ.

Tests

46%

Faild

Tests

54%

(c) Changing FUs and Resolving

Dependencies

Figure 5.15. HB. Sample 2. The number of failed tests and Succeed tests to the Total

number of tests.

www.manaraa.com

105

(a) The Total number of tests as the size of ROB changes: Sample 1

(b) The number of failed tests as the size of ROB changes: Sample 1

N
o
 o

f
 T

es
ts

Instruction Number

N
o
 o

f
 F

.
T

es
ts

Instruction Number

www.manaraa.com

106

(c) The Total number of tests as the size of ROB changes: Sample 2

(d) The number of failed tests as the size of ROB changes: Sample 2

N
o
 o

f
 F

.
T

es
ts

Instruction Number

N
o
 o

f
 F

.
T

es
ts

Instruction Number

www.manaraa.com

107

HB:Sample1

 (After increasing size of HB)

Succ.

Tests

34%
Faild

Tests

66%

HB:Sample2

(After increasing size of HB)

Succ.

Tests

46%

Faild

Tests

54%

(e) Sample 1: Percentage (f) Sample 2: Percentage

Figure 5.16. After increasing the size of the ROB.

The main disadvantage is that there only one result bus, so it takes one cycle per

entry to restore from the history buffer. In addition to the storage and control logic for

the history buffer itself; it requires an extra read port on the register bank to supply the

old values of the destination register to get a case in which there is a need for having 3

read ports.

5.4 The Future File (FF)

5.4.1 Scheme Description:

The organization of a system using the future file is shown in figure 5.19. It

consists of a model similar to the simple reorder buffer with the addition of an extra

register file known as the future file “FF”. As in the simple reorder buffer system, the

reorder buffer holds look-ahead state and the register bank holds in-order state. In

normal operation the future file holds the architectural state, however upon recovery

from exception the architectural state is formed by a combination of the future file and

the Architectural File “AF” (David, 1997).

www.manaraa.com

108

In this scheme, there are two register files: the Architectural File, which has in-

order results, and the Future File, which has out-of-order results for use as operands and

use Reorder Buffer to keep Architectural File in-order.

As each instruction is issued the location in the future file corresponding to its

destination register is marked to indicate that it is valid, and a tag is stored

corresponding to the instruction which is to write the result (David, 1997).

(a)

(b)
Figure 5.17. Processor organization with a future file

Functional

Units

Reorder

Buffer
Register

Bank

In-order

state

S
e
le

ct

Future

File

Instruction results

Instruction Results

Used for normal operations

Reorder

Buffer

Sequential

Register File

Future

Register File

Operands

to ALU

Results

Used for Exception State

www.manaraa.com

109

As results arrive from the functional units they enter the reorder buffer and the

future file. If the instruction returning the result does not match the future file’s tag, the

result is discarded; this allows WAW dependencies to be resolved by discarding older

versions of the register irrespective of the order that they return from the functional

units. If the tag matches the result overwrites it (David, 1997).

When an instruction is being issued and needs to read its operands, it reads the

same location in the register file and the future file. If the future file location is marked

as invalid the operand is read from the architecture file, otherwise the tag or value is

read from the future file. If the future file contains a tag, the instruction issue must stall

to wait for the result to arrive. This lookup and flag check replaces the tag comparator

lookup used in the reorder buffer (David, 1997).

When an exception occurs the valid results in the reorder buffer before the

exception drain into the Architecture File, completing the in-order state. The valid flags

in the future file are then cleared. Any instruction, which is now executed, will read

from the in-order state in the register bank (David, 1997).

5.4.2 Scheme Analysis

Here we are using two files, the future file (FF) and the architectural file (AF).

The future file is (more-or-less) a normal register file. But the main differences with the

ordinal files can be summarized as follows:

• While the architecture register file (AF) holds in-order state and is updated in

order, the future file (FF) is updated out-of-order. Reorder buffer controls

updates to architecture file.

• The future file holds the architectural state.

www.manaraa.com

110

1. During decode, all operands are read from either the architecture file or the

future file, whichever is current.

2. The value read from the future file could be tagged if the instruction

producing the value has not been yet completed.

• The reorder buffer manages look-ahead state for eventual retirement to the

architectural file.

• While the Future file is managed like an ordinary imprecise pipeline, the

Architecture file managed like reorder buffer scheme when head entry valid. On

exception Architecture file contains precise state.

There are two views of the algorithm that can be used. The original algorithm

maintains the precise state with respect to the program counter. In this work we make

some modification to this algorithm by keeping the same advantages with respect to the

registers not the PC as the second view does.

To implement the FF scheme, the following are the main steps:

1. Once the instruction is issued, it is transferred to RSR.

2. When instruction is completed, write from RSR to both future register and

ROB.

3. Decoder reads from future file (no bypassing).

4. When non-faulting instructions reach the bottom of the reorder buffer, their

results are written to the AF.

5. When a faulting instruction reaches the bottom of the reorder buffer,

a. The FF and the ROB are cleared.

b. On interrupt, copy AF into FF.

www.manaraa.com

111

The following modifications can be applied to implement the second view of the

algorithm:

1. After an exception is detected, the ROB is emptied from tail to

head and RSR is also emptied.

2. After executing all previous instructions and handling the

exception, transfer all completed instruction from the FF to RSR

and then to ROB.

3. The transferred instructions are those have no exceptions and

have no dependencies to the excepted instruction. This can be

used to ensure that no error will occur in the register values after

this transfer.

4. The transferred instructions are tested as before in order to be

committed and transferred to the AF.

5. This improvement can be used to improve the execution time and

to increase the speed up of the pipeline by not rolling back all

instructions but trying to complete the pipeline from the moment

after the exception.

The main experiments that were done follow the second view of the FF

algorithm.

Experiments:

The same experiments used in the previous mechanisms, were used here to test

the algorithm. Some modification is applied on the original algorithm as mentioned

above. The results of the experiments done were as follows:

www.manaraa.com

112

1. The first, and the second sample of code, and all their variations were applied to

the algorithm. The results were as follows:

a. The instructions that have hazard dependencies have a sharp peak at the

instructions with dependencies as shown in Fig. 5.18 and 5.19. Other

instructions have a uniform number for the failed tests.

b. The number of the failed tests and succeeded tests are clearly changed as

shown in figure Fig.5.20, Fig. 5.21. Changing the FUs improve the

performance significantly. The total execution time also is decreased

significantly after increasing the number of the functional units.

2. The RAW dependencies are solved; this increases the number of shifts necessary

for each instruction in order to be completely executed.

3. When the size of the Future file, ROB is increased, the results were as shown in

figure 5.22. As we increase the size of the FF and ROB, the total number of

shifts and tests were changed considerably. The change in the number of shifts

appears more clearly. The same discussion on the size of both ROB and FF can

be applied as that mentioned to the ROB and HB previously.

4. We applied the two samples of codes with their variations using the original

flow of the algorithm, the change in the number of tests and shifts were shown in

figure 5.23. In general, the same results obtained as in figure 5.22, except the

number of shifts, which is changed. This can be justified by remembering that re-

executing the completed instructions after the excepted instruction needs more

shifts. The nature of the executed instructions affects the results obtained. If the

instructions need to be re-executed every time an exception occurs, this will

increase the number of tests and shifts, but if the instructions are independent

www.manaraa.com

113

and do not need re-execution the two forms of the flow will give the same

results.

(a) Original Code.

N
o
 o

f
 F

.
T

es
ts

fo

r
 e

ac
h

In

st
r.

Instruction Number

N
o
 o

f
 F

.
T

es
ts

fo

r
 e

ac
h

In
st

r.

Instruction Number

www.manaraa.com

114

(b) Changing FUs.

(c) Resolve Dependency hazards (partially)

(d) Resolve Dependency hazards (Completely)

N
o
 o

f
 F

.
T

es
ts

fo

r
 e

ac
h

In
st

r.

Instruction Number

N
o
 o

f
 F

.
T

es
ts

fo

r
 e

ac
h

In

st
r.

Instruction Number

www.manaraa.com

115

(e) Resolving Dependencies and FUs.

Figure 5.18. FF. Sample 1: the number of Failed Tests per each instruction.

(a) Original Code.

N
o
 o

f
 F

.
T

es
ts

fo

r
 e

ac
h

In
st

r.

Instruction Number

N
o
 o

f
 F

.
T

es
ts

 F
o
r

E
ac

h
 i

n
st

r.

Instruction Number

www.manaraa.com

116

(b) Changing FUs.

(c) Resolve Dependency hazards.

N
o
 o

f
 F

.
T

es
ts

fo

r
 e

ac
h

In
st

r.

Instruction Number

N
o
 o

f
 F

.
T

es
ts

fo

r
 e

ac
h

In

st
r.

Instruction Number

www.manaraa.com

117

(d) Resolving Dependencies and FUs.

Figure 5.19. FF. Sample 2: the number of Failed Tests per each instruction.

FF : Sample 1

(Original Code)

Faild

Tests

71%

Succ.

Tests

29%

FF : Sample 1

(Changing FUs)

Faild

Tests

57%

Succ.

Tests

43%

(a) Original Code (b) Original Instructions (changing FUs.)

N
o
 o

f
 F

.
T

es
ts

fo

r
 e

ac
h

In
st

r.

Instruction Number

www.manaraa.com

118

FF : Sample2

 (Dep. Resolved)

Faild

Tests

72%

Succ.

Tests

28%

FF :Sample1

(FUs & Dep. Resolved)

Succ.

Tests

45%

Faild

Tests

55%

(c) Resolved dependencies (completely) (d) Changing FUs and Resolving Dependencies

Figure 5.20. FF. Sample 1. The number of failed tests and Succeed tests to the Total

number of tests.

FF: Sample 2

(Originl Code)

Faild

Tests

73%

Succ.

Tests

27%

FF : Sample 2

(Changing FUs)

Succ .

Tests

46 %

Faild

Tests

54 %

(a) Original Instruction Code (b) (Resolving Dependency)

FF :Sample2

(Dep. Resolved & FUs)

Succ.

Tests

26%
Faild

Tests

74%

(c) Changing FUs and Resolving

Dependencies

Figure 5.21. FF. Sample 2. The number of failed tests and Succeed tests to the Total

number of tests.

www.manaraa.com

119

(a) The Total number of tests as the size of FF changes: Sample 1

(b) The number of failed tests as the size of FF changes: Sample 1

N
o
 o

f
 T

es
ts

Instruction Number

N
o
 o

f
 F

.
T

es
ts

fo

r

Instruction Number

www.manaraa.com

120

(c) The Total number of shifts as the size of FF changes: Sample 1

(d) The Total number of tests as the size of FF changes: Sample 2

N
o
 o

f
 S

h
if

ts

Instruction Number

N
o
 o

f
 T

es
ts

Instruction Number

www.manaraa.com

121

(e) The number of failed tests as the size of FF changes: Sample 2

(f)The Total number of shifts as the size of FF changes: Sample 2

Figure 5.22. FF. After increasing the size of the ROB, FF.

N
o
 o

f
 F

.
T

es
ts

Instruction Number

N
o
 o

f
 S

h
if

ts

Instruction Number

www.manaraa.com

122

(a)The Total number of tests as the size of FF changes: Sample 1

(b) The number of failed tests as the size of FF changes: Sample 1

N
o
 o

f
 F

.
T

es
ts

Instruction Number

N
o
 o

f
 S

h
if

ts

Instruction Number

www.manaraa.com

123

(c) The Total number of shifts as the size of FF changes: Sample 1

(d) The Total number of tests as the size of FF changes: Sample 2

N
o
 o

f
 T

es
ts

N
o
 o

f

S
h
if

ts

I nstr uction Numb er

Instruction Number

N
o
 o

f
 S

h
if

ts

Instruction Number

www.manaraa.com

124

(e) The number of failed tests as the size of FF changes: Sample 2

(f)The Total number of shifts as the size of FF changes: Sample 2

Figure 5.23. FF. After increasing the size of the ROB, FF using the 1
st
 view of the

algorithm.

5. The number of the functional units can affect the performance of the technique,

as well as the dependency resolving, positively.

N
o
 o

f
 S

h
if

ts

Instruction Number

N
o
 o

f
 F

.
T

es
ts

Instruction Number

www.manaraa.com

125

Finally, the main disadvantages of the Future File scheme:

1. The cost in terms of hardware is a duplicate register bank (the future file

itself), and the validity and tag logic.

2. The future file cannot, by itself, solve RAW dependencies and so is

unsuitable for out-of-order execution without the addition of extra hardware

(David, 1997).

The key advantages offered by the future file can be summarized as follows:

1. Associative lookup in the reorder buffer is no longer required.

2. State saving is easy.

3. No extra bypassing.

www.manaraa.com

126

5.5 Summary

The out of order schemes for handling the precise interrupts were implemented

and examined. After analyzing all schemes, we can see that the ROB technique is not

efficient without bypass paths. These forwarding paths maintain the preciseness of the

processors when they are interrupted and solve the RAW and WAW dependencies.

Although HB scheme reduces the amount of storage needed, it takes one cycle per entry

to restore from the HB since there is only one result bus. In the Future File scheme there

are two files, so the hardware cost is increased because of the duplicated register banks.

Also there is no extra bypassing, but it cannot by itself solve the RAW dependencies.

www.manaraa.com

6. The Proposed Approach

This chapter implements the proposed scheme, which is a compromised

approach between the In Order completion and the Out of Order Schemes for handling

precise interrupts in pipelining system.

6.1 Scheme Description

The same RSR and logic control can be used as that used in the In Order

Completion approach. There is logic on the result bus that checks for exception

conditions in instructions, as they complete. This control information identifies the

functional unit that will supply the result and the destination register of the result. It is

also marked “valid” with a validity bit. Each clock period, the control information is

shifted down one stage toward stage one. When it reaches stage one, if its program

counter is the current program counter to be committed, it is used during the next clock

period to control the result bus so that the functional unit result is placed in the correct

result register.

In this proposed scheme, the scenario is changed. Reserving the entries in the

RSR necessary for each instruction, which are not necessarily consecutive stages, but

occupying the first unused entries in the RSR to keep it executing in order can

accomplish this. The RSR contents are shown in table 6.1.

This makes it possible for more instructions to be executed at the same time, i.e.,

to increase the pipeline throughput. So, in this way, it is possible for a short instruction

www.manaraa.com

 128

Reserved by MULTD

to be placed in the result pipeline in stage i, i –1,i –2,.. , Where is are the first unused

stages in RSR.

Table 6.1. Result Shift Register – Sample 2

(a) Result Shift Register - Sample 1 (James et al., 1988).

Stage
Functional

Unit Source

Destination

Register
Valid

Program

Counter

1 0

2 Integer Add 0 1 7

3 0

4 0

5 FLPT ADD 4 1 6

.

.

N 0

 (b) Sample 2

Stage FU/OP
Destination

Register
Valid

Program

Counter

1

2 LD (1) 0 A

3 LD (2) 0 B

4

5

6

7

8

9

10

11

12

13 MULTD C

14

These modifications necessary to reserve the entries in the RSR, causes

complexity in handling instructions completed out of order, as in the Out of Order

Shift

Upward

Instruction

In stage 1

writes the

result-bus

Shift

Upward

Instruction

In stage 1

writes the

result-bus

www.manaraa.com

 129

Completion, these instructions must be kept in the RSR to be loaded to the result bus

only when their PC is the current program counter to be committed.

6.2 The Proposed Scheme Algorithm

To implemented the proposed scheme, we can follow the following steps:

- Initialization:

1. Initialize the RSR

- Instruction Issue:

1. If there is no RAW dependency and there is enough space in RSR for the next

instruction, then it is issued.

2. Otherwise, stall the instruction issue.

- Instruction Completion:

1. If the instruction caused an exception, mark exception bit in the RSR for that

instruction

2. If the completed instruction has not the correct PC, stall the instruction until

instruction with the correct PC is completed. Otherwise commit instruction.

3. At the commit stage, check the exception bit:

1. If there is no fault:

a. Commit state (the value is written to the register file).

b. The entry removed from the RSR. And all reserved entries for that

instruction are flushed.

2. If the exception bit is set:

a. Issue is stopped in preparation for the interrupt.

www.manaraa.com

 130

b. Squash subsequent instructions in RSR

c. All further writes into the register file are inhibited.

d. The in-order state of the register file is restored.

6.3 Scheme Analysis

Many experiments were done to test the scheme to handle the precise interrupts.

The same variations used in previous chapters were applied here. The results of the

experiments were as follows:

C- The first sample of code is applied to this suggested approach:

1. The total number of shifts and tests were changed, as we reorder instructions to

resolve hazards, and change the FUs. The percentage for the failed tests and

succeeded tests was as shown in Fig.6.2.

2. Fig. 6.1 shows how is the number of shifts and failed tests, is changed after each

modification. As we change the number of functional units, we get better

performance. The same happens if we resolve the dependencies among

instructions and if we combine the two experiments together.

B- The second sample of code is applied. The results were as follows:

1. The total number of tests was the same without any modification while the total

number of shifts is increased as we tried to reorder instructions to resolve

dependencies. The percentage for the failed tests and succeeded tests was shown

in Fig.6.3.

2. Fig. 6.4 shows that, as we increase the number of functional units or having no

dependencies, we get better performance. This better performance appears in the

www.manaraa.com

 131

increase in the number of succeeded tests that are done and decrease in the failed

ones.

C- Several values of the size of RSR are examined. When we applied both samples,

the results were as shown in figure 6.5. As we increase the size of the RSR, we

get better results in the total number of tests. This improvement is slightly

changed when we expanded the RSR to the double size of the minimum size

needed, which is the longest execution time among all instructions used.

(a) Original Code.

N
o
 o

f
 F

.
T

es
ts

 f
o
r

ea
ch

 I
n
st

r.

Instruction Number

www.manaraa.com

 132

(b) Changing Number of FUs.

(c) Resolve all Dependency hazards.

N
o
 o

f
 F

.
T

es
ts

 f
o
r

ea
ch

 I
n
st

r.

Instruction Number

N
o
 o

f
 F

.
T

es
ts

 f
o
r

ea
ch

 I
n

st
r.

Instruction Number

www.manaraa.com

 133

(d) No dependencies, change FUs

Figure 6.1. Proposed Approach. Sample 1, the number of failed tests per each

instruction

Sample1: Method2
(Original Code,

Change FUs)

Succ.

Tests

38%
Failed

Tests

62%

Sample1:Method2

(Resolve Dep.)

Succ.

Tests

46%

Failed

Tests

54%

(a) Original Instruction Code, Change FUs (b) (Resolving Dependency)

N
o
 o

f
 F

.
T

es
ts

 f
o
r

ea
ch

 I
n

st
r.

Instruction Number

www.manaraa.com

 134

Sample1:Method 2

(Resolve Dep . & Change FUs)

Succ.

Tests

46%

Failed

Tests

54%

(c)Changing FUs. and Resolve Dep.

Figure 6.2. Proposed Approach. Sample 1. The number of failed tests and Succeed tests

to the Total number of tests.

Sample2: Method 2

Failed
Tests
14%

Succee.
Tests
86%

Figure 6.3. Proposed Approach. Sample 2. The number of failed tests and Succeed tests

to the Total number of tests.

www.manaraa.com

 135

(a) Original Code.

(b) Changing Number of FUs.

N
o
 o

f
 F

.
T

es
ts

 f
o
r

ea
ch

 I
n
st

r.

Instruction Number

N
o
 o

f
 F

.
T

es
ts

 f
o
r

ea
ch

 I
n
st

r.

Instruction Number

www.manaraa.com

 136

(c) Resolve all Dependency hazards.

(d) Reordering the Instructions to resolve dependencies and changing FUs.

Figure 6.4. The Proposed Approach. Sample 2, the number of failed tests per each

instruction

N
o
 o

f
 F

.
T

es
ts

 f
o
r

ea
ch

 I
n

st
r.

Instruction Number

N
o
 o

f
 F

.
T

es
ts

 f
o
r

ea
ch

 I
n
st

r.

Instruction Number

www.manaraa.com

 137

(a) The Total number of tests as the size of RSR changes: Sample 1

(b) The number of failed tests as the size of RSR changes: Sample 1

N
o
 o

f
 T

 e
st

s

Instruction Number

N
o
 o

f
 F

.
T

es
ts

 f
o
r

ea
ch

 I
n
st

r.

Instruction Number

www.manaraa.com

 138

(c) The Total number of shifts as the size of RSR changes: Sample 1

(d) The Total number of tests as the size of RSR changes: Sample 2

N
o
 o

f
 T

es
ts

Instruction Number

N
o
 o

f
 S

h
if

ts

Instruction Number

www.manaraa.com

 139

(e) The number of failed tests as the size of RSR changes: Sample 2

(f)The Total number of shifts as the size of RSR changes: Sample 2

Figure 6.5. The Proposed Approach. After increasing the size of the RSR.

N
o
 o

f
 F

.
T

es
ts

 f
o
r

ea
ch

 I
n

st
r.

Instruction Number

N
o
 o

f
 F

.
T

es
ts

Instruction Number

www.manaraa.com

 140

The precise interrupt is still accurately handled in this compromised approach.

The process state can be easily restored, since no instruction stores its state and commits

its results out of order. It increases the speed up of the pipeline and improves the

parallelism of the whole execution of the program code without reordering the

committing of the instructions to keep the In-Order Completion of instructions with less

hardware and logic control than that used in the Out of Order Completion schemes.

Instructions are enqueued in the register file; only when their operands are

available, in program order the same as that in the Out of Order Completion Scheme.

When instruction is successfully de-queued, its results are committed in order. The

computed results that are computed out of order is held in the RSR file until previous

instructions, finishing later, have updated the register file. Since exceptions are tested at

the commit stage, exceptions are handled in program order. When the committing

instruction interrupted, all later instructions are squashed.

This scheme has better results than the In Order Completion while keeping the

same advantages of being simple and easy to be implemented (Disregarding the

complexity of keeping the uncommitted instructions in the RSR, until the prior

instructions completed execution). The nature of instructions and dependencies among

them affect the results obtained too.

In this approach independent instructions can be executed without waiting for

the in-order completion. This can be done if these instructions are safe from exceptions,

or any pipelining hazards. This is a costly procedure, compared to the In Order

Completion scheme, since it is difficult to find such instructions. Also, if any previous

unexecuted (uncommitted) instruction has an exception, these out-of-order executed

www.manaraa.com

 141

instructions should be re-executed unless their committed results don’t affect the

process state.

The improvement of this compromised approach reduces the effect of the In

Order Completion approach disadvantages but still not deleting them. Because we have

a fixed size of the RSR, long executed instructions will reserve most of the RSR entries

preventing others from being issued. Also, if the space is not enough for a particular

long executed time instruction then it will wait for other instructions to be freed from

the RSR, preventing other instructions also from being issued. Sometimes we need to

handle the bad fragmentation in the RSR table, which needs special management.

Keeping the in-order committing of instructions limit the performance too.

In this scheme there is no need to resolve WAR. Since no instructions written

before a previous read operation has time to commit, so no read operation would obtain

an incorrect value. The architectural model proposed guarantees this facility, since the

operand registers are read at the time an instruction is issued. Also, there is a single

result bus that returns results to the register file. This bus may be reserved at the time an

instruction is issued or when an instruction is approaching completion. This is the same

as all Out of Order Completion schemes, so there was no need to handle this problem in

this scheme or any of the previous out of order schemes.

To solve the RAW dependencies, we added an entry in the RSR file to store

DestRegOld to get the values of the operands when it is needed to avoid waiting for the

value to be committed, which can compensate the bypassing paths used in ROB and

HB. When the interrupt is detected, the old values are restored. This useful feature

requires more read ports to get the DestRegOld value stored in the RSR file, the same as

the History Buffer scheme.

www.manaraa.com

 142

6.4 Summary

When we compare our scheme with the other used schemes, we should consider

the amount of hardware required in each scheme. In contrast to other schemes, the

proposed scheme requires just one table to handle the interrupts precisely. The Out of

Order Completion schemes use more files than the proposed scheme. The ROB scheme

requires two files: the ROB and the RSR files. The HB scheme requires: the RSR and

the HB files, while the FF scheme uses three files: in addition to the FF and RSR files, it

requires AF file too.

Our suggested approach necessitates an increase in the number of the read ports

the same as that required in the HB scheme and ROB scheme with bypassing; in order

to resolve the RAW dependencies. The number of comparators needed in the Reorder

Buffer scheme with bypassing is no longer needed. The proposed scheme uses the same

mechanism used in the History Buffer and Future File schemes to compensate the use of

these comparators.

www.manaraa.com

7. Precise Interrupt Handling in a VLIW Processors

In this chapter we introduce the reorder buffer with future file and history buffer

methods after extending them for a Very Long Instruction Width (VLIW) processor.

The final scheme, which is discussed, is the Current State Buffer scheme.

7.1 Handling Precise Interrupts in VLIW Processors

In a VLIW processor, interrupt handlers should not modify any of source

registers in the interrupted operation because subsequent operations with respect to the

original program order that use the same source register would need to be re-issued and

re-executed after resumption. The processor cannot re-execute those operations because

they may have already updated the processor state.

Debugging requires precise interrupt in any architectural model. Since the

performance is less critical during debugging, the debugger can execute the original

(unscheduled) code in program order.

The same schemes used in chapter four and chapter five can be used here with

some modification to be applied on VLIW processors. Consider the sample code in

Table 7.1, scheduled for a 2-issue VLIW machine with functional units as shown. The

latencies of the ADD, SUB and DIV operations are 1, 1 and 2 cycles, respectively. This

example illustrates the operation of both the reorder buffer with future file and the

history buffer schemes since each buffer has similar operation mechanisms. The DIV

operation in Mop2 is assumed to cause a trap, so it will not be re-executed after return

from the interrupt handler.

www.manaraa.com

 144

 Table 7.1. A sample code for a 2-issue VLIW processor.

 ALU Unit DIV Unit

Mop1 ADD (R2) NOP

Mop2 ADD (R1) DIV (R3)

Mop3 ADD (R4) NOP

Mop4 ADD (R1) NOP

Mop5 ADD (R4) NOP

7.2 Reorder Buffer with Future File

The reorder buffer keeps enough information about MultiOps and updates the

processor state in scheduled program order. MultiOps in the scheduled code update the

processor state sequentially, but the operations of the original program may not

complete in original program order. The reorder buffer structure is shown in Table7.2.

 Table7.2. Reorder buffer.

The PC field is the program counter address of a MultiOp. Exen is a one-bit

location that is set when the nth operation is executed. Destn is the destination register

number of the nth operation. Resultn is the result generated by the nth operation. Excptn

is the exception conditions generated by the nth operation if one is generated. The

reorder buffer is a circular buffer consisting of Head, Tail and OpSequence pointers.

PC
Exe1…E

xen

Dest1…

Destn

Results1…

Resultn

Excpt1…

Excptn

.

.

.

Head

Tail

www.manaraa.com

 145

Head and Tail pointers point to the head and tail entries in the buffer, respectively.

OpSequence pointer provides an index to the required operation field. The maximum

buffer length is the longest latency operation plus one.

At MultiOp issue, the PC of the MultiOp is placed into the PC field of the

reorder buffer entry pointed by tail pointer, and the destination register numbers are

written into the Dest fields. When an operation executes without an exception, the result

is written into the future file, its Exe bit is set and its result field is updated. The future

file is a replica of the architectural register file. If an operation caused an exception, the

exception status is recorded in the Excpt field. At each cycle, the entry pointed to by the

head pointer is examined. The results are written into the architectural register file if all

Exe bits of nonempty operation fields, i.e. excluding NOPs, are set in the entry. If an

exception occurs in one of the operations, the whole MultiOp is said to be at the

interrupt boundary. Then instruction issue is stopped, and all pipelines are flushed. The

architectural register file loads its contents into the future file. The PC value of the

MultiOp and the exception bits within the instruction are saved as part of the processor

state to identify the source of the exception, and the reorder buffer contents are

discarded. The first excepting operation, in left-to-right order in a MultiOp, will be

reported if more than one operation in the MultiOp cause exceptions. A store buffer is

required to buffer the writes by the store operations into the cache until they are

removed from the reorder buffer.

7.3 History Buffer

The history buffer method can be extended in a similar way as the reorder buffer

method for VLIW. The operating principle for the extended history buffer method is the

same as the original history buffer scheme. It uses a history buffer to keep the old values

www.manaraa.com

 146

n

of registers, rather than the latest values of registers as in the reorder buffer. The buffer

structure is the same as the reorder buffer without a future file, except that the Result

field is replaced with the Old field that retains the old value of a register.

7.4 Current-State Buffer

The current-state buffer is a new interrupt-handling scheme for a VLIW

processor that signals interrupts immediately using a modest buffer suggested in. It

supports both the Less-than-or-Equals and Equals scheduling models. It detects and

signals interrupts as soon as they occur. The current-state buffer does not re-execute the

operations that have already completed before the interrupt is taken when the program

resumes. It relies on compiler scheduling support but requires only simple hardware.

The hardware consists of a buffer, called current-state buffer, and a mask register that is

shown in Figure 7.1. Each buffer entry consists of a PC field for each MultiOp, an Exe

bit and Excpt bits for each operation.

1 n

PC Exe1… Exen Excpt1… Excptn

…

…

…

Figure 7.1. The current-state buffer and mask register.

The PC value of a MultiOp to be issued next is put into the PC field of the

buffer entry pointed to by the tail pointer. Then the tail pointer is incremented. Each

Tail

Head

OpSequence

Mask Register

Issue Register

www.manaraa.com

 147

operation in the MultiOp is issued with an attached buffer address, an operation

identifier, and exception tag. When an operation is executed, the tags attached to each

operation access the associated buffer entry. Then its computed result is written into the

register file, and its Exe bit is set in the current-state buffer if there is no exception. On

each cycle, the entry at the head of the buffer is examined. The entry will be discarded

by incrementing the head pointer if all Exe bits of nonempty operation fields are set. An

exception will be signaled immediately to the exception logic if an operation causes an

exception.

1. The excepting operation’s exception bits are set in the buffer, the issue is

stopped and all pipelines are flushed.

2. The processor state, the relevant portion of memory and the current-state

buffer contents between the head and tail pointers are saved. The saved buffer

contents identify the source of the excepted operation.

3. After return from the interrupt handling routine, previously executed and

completed operations are not re-executed, the interrupt handler routine

returns by a special return instruction, which switches to a special mode.

In the special mode, the processor, the memory state and the current-state buffer

contents are resumed, except the PC register. The buffer contents are examined starting

from the head pointer. If all operations in a MultiOp completed execution, that MultiOp

is not fetched. However, pipeline bubbles are inserted in order to honor dependence

latencies of scheduled operations if there are MultiOps previously issued from the

current-state buffer and being still executed in the pipelines. Otherwise, no pipeline

bubbles are needed. If one or more operations in a MultiOp are still incomplete, the PC

value of the entry is loaded into the PC register and the associated MultiOp is fetched

www.manaraa.com

 148

and brought into the issue register. The mask register is loaded with the Exe bits of the

entry, masking the issue register so that previously executed operations are not re-

issued. This modified MultiOp is then issued to the functional units. This process

continues until the head pointer passes the tail pointer. (This is detected by the buffer

control logic.) As soon as this happens, the buffer control logic pops up the PC register,

either from the stack or a shadow PC register, and the processor resumes execution from

the PC.

7. 5 Compiler Support

Anti-dependence between two operations may cause a problem in the current-

state buffer when the sink operation of anti-dependence completes before the source

operation of anti-dependence does. If the source operation excepts, the interrupt handler

may read an incorrect value of the source register on which the anti-dependence occurs.

Such anti-dependence is called an unsafe anti-dependence. The compiler can treat

unsafe anti-dependencies between operations as if they are flow dependencies. It must

guarantee that the destination register of the sink operation is not modified until the

source operation completes.

The compiler modifies only unsafe anti-dependencies. Safe anti-dependencies

remain in the code. In the pass-scheduling phase of the compiler, unsafe dependencies

are converted into flow-dependencies.

However, there is a drawback in treating unsafe anti-dependencies as flow-

dependencies. The scheduling times tend to increase because of NOPs that have to be

inserted to increase the distance between two anti-Head dependent operations. This

could increase the schedule length and degrade the performance, particularly in Equals

www.manaraa.com

 149

scheduling model because it is likely that Equals model produces more unsafe anti-

dependencies than Less-than-or-Equals model.

7.6 Schemes Experiments

The operation of the reorder buffer with future file and the history buffer for the

same example illustrated in table 7.1 is shown in table7.3.

 Table7.3. Execution steps in the Reorder and History Buffer

PC Dest1 Exe1 Exp1 Dest2 Exe2 Exp2

1 R2 0 0 - - -

PC Dest1 Exe1 Exp1 Dest2 Exe2 Exp2

1 R2 1 0 - - -

2 R1 0 0 R3 0 0

PC Dest1 Exe1 Exp1 Dest2 Exe2 Exp2

1 R2 1 0 - - -

2 R1 1 0 R3 0 0

3 R4 0 0 - - -

PC Dest1 Exe1 Exp1 Dest2 Exe2 Exp2

4 R1 0 0 - - -

2 R1 1 0 R3 0 1

3 R4 1 0 - - -

PC Dest1 Exe1 Exp1 Dest2 Exe2 Exp2

2 R1 0 0 - - -

PC Dest1 Exe1 Exp1 Dest2 Exe2 Exp2

2 R1 1 0 - - -

3 R4 0 0 - - -

PC Dest1 Exe1 Exp1 Dest2 Exe2 Exp2

2 R1 1 0 - - -

3 R4 1 0 - - -

4 R1 0 0 - - -

H

H

T

H

T

H

T

H

T

Cycle 0

Cycle 1

Cycle 2

Cycle 3

T

Cycle

4+n

H
Cycle

5+n

T

H

T
Cycle

6+n

www.manaraa.com

 150

PC Dest1 Exe1 Exp1 Dest2 Exe2 Exp2

2 R1 1 0 - - -

3 R4 1 0 - - -

4 R1 0 0 - - -

PC Dest1 Exe1 Exp1 Dest2 Exe2 Exp2

2 R1 1 0 - - -

3 R4 1 0 - - -

4 R1 1 0 - - -

The operation of the current state buffer for the same example is the same as that

shown in table7.3 except after the exception is detected. Table7.4 shows the results after

cycle n+4.

Table7.4. Execution steps in the current-state buffer

PC Exe1 Exp1 Exe2 Exp2

4 0 0 - -

PC Exe1 Exp1 Exe2 Exp2

4 1 0 - -

5 0 0 - -

PC Exe1 Exp1 Exe2 Exp2

4 1 0 - -

5 1 0 - -

Figure 7.2 shows the comparison between the three previous schemes performed

on the same sample of code.

H
Cycle

7+n

T

Cycle

8+n H

T

Cycle

4+n

H

T

Cycle

5+n H

T

Cycle

6+n H

T

www.manaraa.com

 151

VLIW Schemes

HB FF CSB

0

1

2

3

4

5

6

7

1 2 3
Total No. of Tests No. Of Failed Tests

Figure 7.2. The comparison diagram between the three schemes

F
re

q
u

en
c
y

The size of the Buffer

www.manaraa.com

 152

7.7 Summary

In this chapter, three schemes for handling precise interrupts in VLIW

processors were implemented and analyzed. The algorithms written for implementing

these schemes give the same results obtained in. The Current State Buffer gives the best

results over all the other two schemes.

www.manaraa.com

8. Conclusion and Future Work

In the thesis, we have implemented and investigated five schemes for handling

the precise interrupts in pipelining systems and a new scheme is suggested. Another

study is done for the VLIW processors. Obtained results show the following

considerations and conclusions.

8.1 Preface

Some observations are appropriate after introducing the different schemes. The

average time to produce the finished results is faster if each stage is specialized than if

one general-purpose stage does it all, even if the total time to produce each result, start

to finish, is lengthened. There is an implication that each stage takes the same amount of

time, and as a result of this constant time per stage, we get results on regular basis

(Henry et al., 1989). We used specialized stages in all schemes discussed in the thesis,

except the suggested approach.

The second important point is that there are some practical limitations on

practical depth of a pipeline, which arise from:

1. Pipeline latency. The fact that the execution time of each instruction

does not decrease, adds limitations on pipeline depth;

2. Imbalance among pipeline stages. Imbalance among the pipe stages

reduces performance since the clock can run no faster than the time

needed for the slowest pipeline stage;

www.manaraa.com

154

3. Pipeline overhead. Pipeline overhead arises from the combination of

pipeline register delay (setup time plus propagation delay) and clock

skew.

So, once the clock cycle is as small as the sum of the clock skew and latch

overhead, no further pipelining is useful, since there is no time left in the cycle for

useful work.

Another remarkable notice is that, the change of the FUs sometimes becomes

more costly than the better performance obtained. When the execution stage is

extended, the pipeline is extended too. In addition to the longer (and possibly more

frequent) stalls, the longer pipeline requires additional forwarding hardware. It also

requires more complex hazard detection to find dependencies in the additional stages.

The major benefit to a longer pipeline is that each stage may be shorter than the case

where there is a shorter pipeline. This means that the clock cycle can be shorter,

allowing more instructions to be issued in a fixed time. Of course, the added stalls

might put away this benefit, but the hope is that at least some speedup will be left.

8.2 The Comparison Between Schemes

First of all, we compare the different schemes used to handle precise interrupts

in scalar processors, with the architecture discussed fully in chapter 4.

Before comparing the different mechanisms used throughout the thesis, we

should take into consideration the fact that the performance gained by adding a new

mechanism has to be balanced against the amount of hardware required to implement

the mechanism, and that implementation's potential impact on the cycle-time of the

processor. Both of these are extremely difficult to quantify without an actual

www.manaraa.com

155

implementation, and even with such an implementation it is sometimes difficult to

isolate the impact caused exclusively by the new mechanism, or by its interactions with

other processor elements.

We built our own simulators to verify the results obtained since we did not find

any ready used simulators. The only existing simulators, which concerned in pipelining

did not handle interrupts at all and just mentioned that it is another heavy work to be

done. Even though, those uncompleted pipelined simulators, were built with the full

corporation between several universities in the United States of America and the IBM

Company.

So, the comparisons of our scheme with other schemes that implement precise

interrupts were more qualitative than quantitative.

In the In Order Completion, the in-order state is always available in the register

file, thus it is restored immediately (unlike the other schemes). But this scheme suffers

from stalling instructions at the issue stage, the decrease in performance and long

program execution time.

The key features of the Reorder Buffer, that can be stated after the discussion

and analysis of the results in chapter 5, are that: The Reorder Buffer requires complex

bypass paths, which may increase register read latency. If we use it without bypassing,

ROB not much better than In Order Completion. With a relative small number of ROB

entries, implementing precise interrupts causes relatively little performance losses. The

reason of why some performance loss remains may be that a pending store will cause all

further load or store to stall at issue. Finally, the Reorder Buffer scheme requires

rollback logic to put old results back in register file on exceptions.

www.manaraa.com

156

In the History Buffer scheme, the in-order state is not always available in the

register file, thus it requires rollback logic to put old results back in register file on

exceptions. This is because instructions complete out-of-order, while the register file

updated immediately, the hardware cleans-up on exception, so it is used to undo

instructions. History Buffer has fewer interconnections than bypassing ROB, but

requires another read ports to register file with a total of three. The final feature is that

bypassing is slightly more complex here than that in Reorder Buffer.

The Future File scheme features can be summarized as being fast, need no

bypass paths, with simple rollback, but duplicates of register files are needed which are,

the Future File and the Architecture File. The future file removes the need for the

associative lookup of the reorder buffer while still not incurring cost in saving state. In a

system with a future file, the recovery from an exception is simple since it is only

necessary to drain the reorder buffer and clear a set of flags (David, 1997).

The suggested scheme is a compromised technique between the features of Out of

Order Completion and that of the In Order Completion schemes. Although this

technique reduces the effect of the In Order Completion approach disadvantages, it also

requires the committing of instructions only in order, the same as the Out of Order

Completion schemes. Another limitation is the size of the RSR, which may force long

instructions to wait until the required space is available. In contrast to other schemes,

the compromised one requires less hardware and control logic to handle the interrupts

precisely than all other schemes.

The following points can summarize the above comparison

www.manaraa.com

157

o The reorder buffer must complete all outstanding register updates that come

before the faulting instruction prior to being invalidated. This could take many

cycles, especially since some of the instructions in question will not have

completed.

o There is no way around this when using a future file, as it holds only the most

recent values after the exception.

When a future file is not used, we can provide the reorder buffer with the ability

to invalidate all entries that were allocated after the instruction. Since the most recent

value is provided by the associative lookup, we don't need to wait on outstanding, valid

instructions.

The Comparison Between 3
Schemes

ROB

HB

FF

0

10

20

30

40

50

60

1 2 3

The Scheme when file = 5

Total No.
of Tests

Totl No.
of Shifts

Comparison between the 3

Schemes : Sample 2

FFHB

ROB

0

10

20

30

40

50

60

70

1 2 3

The Scheme when file = 5

Total No. of

Tests

Totl No. of

Shifts

F
re

q
u

en
cy

F
re

q
u

en
cy

Scheme No.
Scheme No.

www.manaraa.com

158

(a) The Total number of shifts/Tests in

the three schemes when the size = 5:

Sample 1

(b) The Total number of shifts/Tests in

the three schemes when the size = 5:

Sample 2

Comparison between 4

schemes

IO

ROB

HB FF

0

10

20

30

40

50

60

1 2 3 4

when the file gives unchanged

values

Total No. of

Tests

Totl No. of

Shifts

(c) The Total number of shifts/Tests in

the three schemes when values become

stable: Sample 1

(d) The Total number of shifts/Tests in

the three schemes when values become

stable: Sample 2

Figure 8.1. Comparison between the schemes: “Compromised Approach (IO)”, ROB,

HB, and FF schemes.

Figure 8.1, shows the comparison between the four main schemes used for the

scalar processor mentioned in chapter four. The first graphs (a, b) restricted when the

size of the buffer used in the algorithm is 5 at which the results become steady in all

these schemes. Since the minimum size of the RSR should be at least the same as the

largest pipeline stage, the comparison is repeated but now with a size of the buffer equal

to the value where the results can not be changed even if the size is increased more.

Comparison between 4

Schemes

FFHB

ROBIO

0

10

20

30

40

50

60

70

1 2 3 4

When Files give unchanged

values

Total No. of
Tests

Totl No. of
ShiftsF

re
q

u
en

cy

F
re

q
u

en
cy

Scheme No.
Scheme No.

www.manaraa.com

159

As shown from the figure, the better improvement regarding the total number of

the tests is obtained in the case of the suggested scheme. The total number of shifts was

the maximum in this scheme, this can be understood when we remember that the

scheme uses only one buffer, and every time an instruction is issued multiple shifts are

done, especially when trying to get empty places to this newly issued instruction.

Finally, as shown from the previous analysis in this chapter and the previous

ones, the suggested technique gives the best results. The Reorder Buffer technique is a

good one but its drawbacks can be solved easily in the History Buffer. The advantages

of he HB are used in the proposed technique to solve the ROB drawbacks.

An important improvement to this method can be accomplished by using an

intelligent compiler, to do the proper re-arrangements and optimization to reorder

instructions to get the minimum dependencies among instructions.

Secondly, the thesis discusses the handling of precise interrupts in VLIW

processors, as shown in chapter seven, the Current State Buffer scheme gives better

results than all other schemes used.

8.3 Extensions

8.3.1 Handling other State Values:

Most architectures have state information other than what we have assumed in

the architectural model in the thesis. Such state information is the page and segment

table, interrupt mask conditions, etc.

www.manaraa.com

160

In architectures that use condition codes, the condition codes are state

information. Extensions to Reorder Buffer, History Buffer, and the Future File can be

used to handle such information state.

8.3.2 Linear Pipeline Structure

An alternative to the parallel functional unit organizations used in the discussion

previously is the linear pipeline organization. Linear pipelines provide a more natural

implementation of the register-storage architectures like the IBM 370 (James et al.,

1988). In general, reordering instructions after execution is not as significant as issue in

such organizations because it is natural for instructions to stay in order as they pass

through the pipe. Even if they finish early in the pipeline, they proceed to the end where

exceptions are checked before modifying the process state. Hence, the pipeline itself

acts as a sort of reorder buffer (James et al., 1988).

Linear pipelines often have several bypass paths connecting intermediate

pipeline stages. A complete set of bypasses is typically not used, rather there is some

critical subset selected to maximize performance while keeping control complexity

manageable (James et al., 1988).

8.3.3 Vectors

Implementing precise interrupts in pipelined vector architecture is more difficult

than for a scalar architecture. When considering precise interrupts with respect to vector

instructions, preciseness must be carefully defined. Unlike the scalar instructions

described thus far, vector instructions do not produce a single result and change the

system state as they complete. Rather, they produce a series of results that change the

system state over the course of many clock periods. The sequential architectural model,

www.manaraa.com

161

as applied to vectors, requires that one vector instruction complete its last result before

the next begins producing results (James et al., 1988).

There are two primary classes of vector architectures: those with vector

registers, and those with memory-to-memory vector operations. For vector register

architectures, we extend our earlier methods for maintaining scalar register precisely

(James et al., 1988).

 Various methods for implementing precise interrupts can be extended for vector

registers, but the cost is a doubling of the number of hardware registers plus some

additional control hardware to keep track of the “current” pointers (James et al., 1988).

8.3.4 In-Line Interrupt Handling

To improve the performance of the handling of interrupts and to get better

results, we can use any of the two methods of in-lining the interrupt handler within the

reorder buffer as mentioned in (Amer et al., 2000). Both of the schemes exploit the

property of a reorder buffer: instructions are brought in at the tail, and retired from the

head. If there is enough room between the head and the tail for the interrupt handler to

fit, we essentially inline the interrupt by either inserting the handler before the existing

user-instructions, or after the existing user-instructions. Inserting the handler routine

instructions after the user-instructions, the append scheme, is similar to the way that a

branch instruction is handled: the PC is redirected when a branch is predicted taken,

similarly in this scheme, the PC is redirected when a TLB miss is encountered. Inserting

the handler instructions before the user-instructions, the prepend scheme, uses the

properties of the head and tail pointers and inserts the handler instructions before the

user-instructions. (Amer et al., 2000)

www.manaraa.com

162

The two schemes differ in their implementations, the first scheme being easier to

build into existing hardware. To represent our schemes in the following diagrams, we

are assuming a 16-entry reorder buffer, a four-instruction interrupt handler, and the

ability to fetch, en-queue, and retire two instructions at a time. To simplify the

discussion, we assume that instruction state is held in the ROB entry, as opposed to

being spread out across ROB and reservation-station entries. A detailed description of

the two in-lining schemes follows:

1. Append in-line mode: The hardware responds by checking to see if the handler

would fit into the available space. Assuming the handler is four instructions long,

it would fit in the available space. The hardware turns off user-instruction fetch,

sets the processor mode to INLINE, and begins fetching the first two handler

instructions. These have been en-queued into the ROB at the tail pointer as usual.

For example, the Alpha’s TLB-write instructions modify the TLB state once they

have finished execution and not at instruction-commit time. In many cases, this

does not represent an inconsistency, as the state modified by such handler

instructions is typically trans- parent to the application; for example, the TLB

contents are merely a hint for better address translation performance.

2. Prepend in-line mode: The hardware checks to see if it has enough space, and if

it does, it saves the head and tail pointer into temporary registers and moves the

head and tail pointer to number of instructions before the current head. At this

point the processor is put in INLINE mode, the PC is redirected to the first

instruction of the handler, and the first two instructions are fetched into the pipe.

Eventually, when the last handler instruction fills the TLB, the flag of the

excepted instruction can be removed and the exceptional instruction may re-

access the TLB. This implementation effectively does out-of-order committing of

www.manaraa.com

163

handler instructions, but again, since the state modified by such instructions is

transparent to the application, there is no harm in doing so. (Amer et al., 2000)

The two schemes presented differ slightly in the additional hardware needed to

incorporate them into existing high performance processors. Both the schemes require

additional hardware to determine if there are enough reorder buffer entries available to

fit the handler code. Since the prepend scheme exploits the properties of the head and

tail pointers, additional registers are required to save the old values of the head and tail

pointers. As we shall see later, incorporating these additional registers will allow for the

prepend scheme to out-perform the append scheme by 20-30%. There are a few

implementation issues concerning the in lining of interrupt handlers. They include the

following:

1. The hardware knows the handler routine length.

2. There should be a privilege bit per ROB entry.

3. Hardware needs to signal the exceptional instruction when the handler is

finished.

4. After loading the handler, the “return from interrupt” instruction must be killed,

and fetching resumes at nextPC, which is unrelated to exceptionalPC.

5. In-lined handler instructions shouldn’t affect the state of user registers.

6. The hardware might need to know the handler’s register requirements.

7. Branch mispredictions in user code should not flush handler instructions. (Amer

et al., 2000)

8.3.5 Register File Extension

www.manaraa.com

164

When using the Reorder Buffer we can extend the register file used. Here, in the

Register File Extensions, the register file holds the values of the specification registers

of the machine. We still denote the set of registers by R. We denote the value of the

register r 2 R during cycle T by R[r] T: data. We assume that all registers have a

common width. We denote the set of possible values of a register by W (R) (Daniel,

2001).

The register file is extended with a producer table. The producer table records

which instruction in the machine writes its results to a given register. For that purpose,

the producer table contains two data items for each register. The first is a valid bit. We

denote the value of the valid bit of register r during cycle T with R[r] T: valid. If it is

set, there is no instruction currently executing with the register as destination. If it is not

set, there is such an instruction. In this case, the second item, a reorder buffer tag, points

to the last instruction with the register as destination. We denote the value of this tag by

R[r] T: tag (Daniel, 2001).

The reservation stations act as queue for the instructions and their source

operands. We give each reservation station a number. We denote the values in

reservation station number rs during cycle T by RS [rs] T. Each reservation has a full bit

RS [rs]: full. It indicates that the reservation station is in use. In addition to that, we

store the tag of the instruction in the reservation station in RS [rs]: tag (Daniel, 2001).

We support instructions with an arbitrary number of source operands. Let x

denote the number of a source operand. For each source operand, we store a valid bit RS

[rs]:op [x]: valid. If the bit is set, the value of the operand is stored in RS [rs]:op [x]:

data. If it is not set, we store the tag of the instruction producing the value in RS [rs]:op

[x]: tag (Daniel, 2001).

www.manaraa.com

165

8.4 Future Work

There are many other interesting issues related to implementing precise

interrupts. The extensions presented in this chapter can be implemented and tested. The

handling of memory faults can be studied also.

8.5 Summary

Different schemes used to handle precise interrupt in both scalar and VLIW

processors. The comparisons of our scheme with other schemes that implement precise

interrupts were more qualitative than quantitative.

The suggested scheme is a compromised technique between the features of Out

of Order Completion and that of the In Order Completion schemes. Although the

Reorder Buffer technique is a good one, its drawbacks can be solved easily by using the

History Buffer. The advantages of the HB scheme are used in the proposed technique.

If we consider the amount of hardware required in each scheme, we can find that

the proposed scheme requires just one table to handle the interrupts precisely. The Out

of Order Completion schemes use more files than the proposed scheme. The ROB

scheme requires two files: the ROB and the RSR files. The HB scheme requires: the

RSR and the HB files, while the FF scheme uses three files: in addition to the FF and

RSR files, it requires AF file too.

www.manaraa.com

166

The proposed scheme tries to reduce the effect of the In Order Completion

approach disadvantages. It requires committing of instructions the same as the Out of

Order Completion. The limitation on the size of the RSR forces long instructions to wait

until the required space is available. It necessitates an increase in the number of the

read ports the same as that required in the HB scheme and ROB scheme with bypassing;

in order to resolve the RAW dependencies. The number of comparators needed in the

Reorder Buffer scheme with bypassing is no longer needed. The proposed scheme uses

the same mechanism used in the History Buffer and Future File schemes to compensate

the use of these comparators.

www.manaraa.com

167

REFERENCES

Amer, Jaleel., and Bruce, Jacob. 2000. Improving the Precise Interrupt Mechanism of

Software-Managed TLB Miss Handlers, Electrical and Computer Engineering

University of Maryland at College Park.

Barry, Wilkinson. 1996. Computer Architecture design and performance, second

edition, Prentice Hall Europe.

Daniel, Kroning. 2001. Formal Verification of Pipelined Microprocessors, Ph.D.

Thesis, University of Saarland,

Daniel, Kroening., Silvia M. Mueller., and Wolfgang J. Paul. 2001. Rigorous

Correctness Proof of Tomasulo Scheduler Supporting Precise Interrupts, Dept. 14:

Computer Science, University of Saarland,

David, Gilbert. 1997. Dependency and Exception handling in an Asynchronous

microprocessor, Ph.D. Thesis, University of Manchester, Manchester, UK.

Henry, Levy., Richard, Eckhouse., Jr. 1989. Computer Programming and Architecture

– VAX, 2
nd

 Edition, Library of Congress cataloging-in-publication data.

James, Smith., Gurindar, Sohi. Aug. 20, 1995. The Microarchitecture of Superscalar

Processors.

Mayan, Moudgill. 1996. Precise Interrupts, 0772-1732/96, IEEE., IBM T.J. Watson

Research center, Stamatis Vassiliadis. Delft University of Technology,

Schmalz, M.S. 1998. Organization of Computer Systems, Francisco, CA: Morgan

Kaufman.

 V.C., Pierguido., Caironi., Lorenzo, Mezzalira., Sami, Mariagiovanna. 1996. Context

Reorder Buffer: an Architectural Support for Real-Time Processing on RISC

Architectures, Politecnico di Milano, Proceedings of the 8th Euromicro Workshop

on Real-Time Systems.

www.manaraa.com

168

Sang-Joon, Nam., In-Cheol, Park., and Chong-Min, Kyung. March 1999. Fast Precise

Interrupt Handling Without Associative Searching in Multiple Out-Of-Order Issue

Processors, IEICE Trans. INF. & SYST. Vol. E82-D, No.3.

UMD-SCA-2000-02 ENEE 446: Digital Computer Design. Fall 2000. An Out-of-Order

RiSC-16- Tomasulo + Reorder Buffer = Interruptible Out-of-Order, ENEE 446:

Digital Computer Design. Prof. Bruce Jacob.

Wen-mei, Hwu. 1999. Computer Microarchitecture: Hardware and Software. IMPACT

UIUC ECE 411 and NTU CA 718-Q: ©All Rights Reserved.

www.manaraa.com

169

 (Pipeline �������	
� �
 �������� ��������� �)

�����

 ��� "����� ���� "� ���� �����

!�"���

#���$ % &���� ���$ �������

'()�

 �������	
��	�
��	 ������ �	Precise Interrupts ����	 �� Pipelining

� ��� �� ������	 ����
� ����
�	 ��� �� �!�"	� #���$	 %��	 �� ��
�
 &�����	 ����

��� �'� &��	���	 �� ��(���	 �	%�$	 ����
�)�* �'� . ���	(
��	 �%!�,	 ���� �-

 .�
 �/
�����
�	 0�� 1���
 2�	 3(4� ���
�����
�� &
���	 ��5� �6	�'��	 1���
�	 ��(
 7�����

��
���� ��8�����	 ������� ������
�	 �����	 �� 	9���:
 ����� �!;��
 �
�	
��	�
�$	 ��!� �

�������	 .

���
*��	
�����
�	 1���
 ���<= �!��/� ��
$���	 >1" <� ������ 2�	 ������	 ?(!
 .

 ��
����$	 ��
;����)6�@*� A�(�� ����� �"� �������� �(�(� �;��� B	�
/	 �
 (/�

�����
�� &
���	 ��!
�$	 ��"�In Order Completion'��	 ��!�$	�
�����
�� �6	�Out

of Order Completion.

 �	 ���
 ����� ��(*
���	 C����� �!
���;�� ���
;��	 �;����	 ���
� ��	�((��

��D��;��	 E�*$	 C���	 C��
 �������
	%���� ?@

 ���
;��	 �;����	.

	Cover.pdf
	Chapter One.pdf
	Chapter Two.pdf
	Chapter Three.pdf
	Chapter Four.pdf
	Chapter Five.pdf
	Chapter Six.pdf
	Chapter Seven.pdf
	Chapter Eight.pdf

