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Abstract 
 

Handling of precise interrupts in pipelining systems is a significant field of 

research in the computer architecture. Today’s high-performance processors employ 

out-of-order execution, which permits instructions to be overtaken by later instructions. 

Many schemes were used, in the time of interrupt, to maintain the sequential state, and 

not modifying process state in an order different from that defined by the sequential 

architectural model.  

The thesis mainly is concerned with two techniques: In Order Completion, and 

the Out- of Order Completion. Both techniques are implemented and tested. The Out Of 

Order Completion technique consists of: Reorder Buffer, Reorder Buffer with Bypass 

Paths, History Buffer, and the Future File schemes. The results obtained and the 

comparisons between all of these techniques are presented throughout the thesis. 

A new approach is proposed in this thesis. It is a compromised scheme between 

the In Order Completion and the Out Of Order Completion. The control logic, the flow 

of information, and the hardware components are stated. After the new proposed 

scheme is analyzed, we found that it gives better results than the other two techniques 

regarding to the hardware components and the control logic used in this scheme.  
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1. INTRODUCTION 

1.1 Preface:  

Most current computer architectures are based on a sequential model of program 

execution. In contrast, a high performance implementation may be pipelined, permitting 

several instructions to be executed at the same time. Complex hardware schemes are 

required to maintain the sequential state since the use of a sequential architecture and a 

pipelined implementation clash at the time of an interrupt; pipelined instructions may 

modify the process state in an order different from that defined by the sequential 

architectural model.  At the time an interrupt condition is detected, the hardware may 

not be in a state that is consistent with any specific program counter value (James et al., 

1988). When an interrupt occurs, the interrupted process state must be saved (James et 

al., 1988). 

Interrupts are precise if the saved processor states are consistent with the in-

order states defined by the program sequence where one instruction completes before 

the next begins (Sang-Joon et al., 1999). 

Therefore, today’s high-performance microprocessors employ out-of-order 

execution to raise performance. In contrast to in-order execution, out-of-order execution 

permits these instructions, which block the execution stream, to be overtaken by later 

instructions. This results in better utilization of the function units and in a higher 

performance compared to the pipelined in-order designs (Daniel et al., 2001). The out-

of-order issue of instructions has drastically increased the utilization of the precise 

interrupt mechanism to handle exceptional events (Amerl et al., 200).  
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1.2 Objectives of Handling Precise Interrupts  

In computers, there is a problem in writing programs; that is programs are not 

linear! One or more pipeline stages may have to be flushed in processing an exception. 

The number of flushed stages depends on where the exception is triggered in the 

pipeline. Complex hardware schemes are required to maintain the sequential state. The 

out-of-order issue can cause a serious problem at the time of interrupts, because it 

makes the process states different from those defined by the program sequence (Sang-

Joon et al., 1999). Interrupt handlers should not modify any of source registers in the 

interrupted operation because subsequent operations with respect to the original 

program order that use the same source register would need to be re-issued and re-

executed after resumption. The processor cannot re-execute those operations because 

they may have already updated the processor state. So, we have to preserve registers in 

the interrupted processor state. 

In pipelined machines, most difficult exceptions have two properties: 

a. They occur within the instruction. 

b. They must be restartable. 

 Although precise interrupt is preferable, the implementation of it is difficult 

because of the following: 

1. Interrupts can occur anywhere during the execution of an instruction. 

2. Multiple instructions are being executed, and each may have partially 

updated state information. 

3. Multiple instructions are being executed, so multiple interrupts can occur 

at the same time. 
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So, with the current trends in the design of processors and operating systems, the 

cost of handling exceptions precisely is also becoming extremely expensive; this is 

because of their implementation.  Exceptional situations are harder to handle in a 

pipelined machine because the overlapping of instructions makes it more difficult to 

know whether an instruction can safely change the state of the machine or not.  

1.3 Previous Works 

There are many studies, which attempted to study or to develop the handling of 

precise interrupts in pipelining systems. James E. Smith and Gurindar S. Sohi have 

some of these researches in their research in the superscalar processing (James et al., 

1995) focusing on converting an ostensibly sequential program into a more parallel one. 

They used the phase in which they recommend of committing the Process State in 

correct order so that precise interrupts can be supported. Pierguido V.C. Caironi, 

Lorenzo Mezzalira, Mariagiovanna Sami presented, in (pierguido et al., 1996), a 

hardware solution to the problem of precise interrupts and exceptions in superscalar 

RISC CPU architectures. This solution called Context Reorder Buffer (CRB) which is 

based both on the reorder buffer architecture presented by Smith and Pleszkun, and on 

the concept of context. Daniel Kroning proved, in (Daniel, 2001), the data consistency 

of the pipelined machines and presented a generic approach to speculative execution, 

where he proposed a data consistency criterion for such a machine. He applied this 

method in order to implement and prove DLX pipeline with branch prediction and 

precise interrupts. E .Ozer, S.W.Sathaye, K.N.Menezes, S. Banerjia, M.D.Jennings and 

T.M.Conte have mentioned in their study, that “interrupt handling in out-of-order 

execution processors requires complex hardware schemes to maintain the sequential 

state, especially implementing the precise interrupts”. They apply in their work the 
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reorder buffer with future file and the history buffer methods to Very Long Instruction 

width (VLIW) processors, and present a new scheme, called the “ Current-State Buffer 

(CSB)”.  Daniel Kroning in his paper, (Daniel et al., 2001), combines the Tomasulo 

Scheduler with a reorder buffer, which implements precise interrupts. He gave a 

mathematical correctness proof for this enhanced scheduling algorithm. James E. Smith, 

Andrew R. Plezkun in (James et al., 1988) described the precise interrupt problem and 

discussed five solutions, which are In-Order Instruction completion, Reorder Buffer, 

Reorder Buffer with Bypass Paths, History Buffer, and Future File. They discussed the 

performance for each method examined. David Alan Gilbert in (David ,1997) described 

a solution to the problem of dependency and exception-handling mechanisms in the 

context of a third generation asynchronous implementation of the Advanced Risk 

Management (ARM) instruction set architecture. The Reorder Buffer was the basis of 

the architecture and the novel enhancements as Hwu and Patt proposed. They described 

an enhanced mechanism, which reduces the need to stall the pipeline.  

1.4 Main Points of Contribution 

We built our own simulators to implement the schemes examined and to verify 

the results obtained. There was not any complete algorithm, we wrote these algorithms 

with their full implementation, and did all the analysis for these schemes. We searched 

for any ready used simulator, but unfortunately, we found only some, which is related to 

pipelining without any handling of the interrupts. They mentioned that interrupts 

problem is another heavy work that is not matter of concern. Even though, these 

simulators were built with the full corporation between several universities in the 

United States of America and the IBM Company, they were incomplete.  

The following are the main points of contribution presented in the thesis: 
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1. Two architectural models are used throughout the thesis: The scalar 

architecture and the VLIW processors. 

2. All algorithms used in the thesis are stated, implemented, and analyzed. 

3. The In-order Completion, and the Out of Order Completion techniques are 

used. The Out of Order Schemes used are: Reorder Buffer, the Reorder Buffer 

with Bypass paths, the History Buffer, and the Future File. The performance 

obtained from their implementation is discussed. 

4. A new technique is suggested to handle the precise interrupts in pipelining 

systems. It is a compromised technique between the In Order Completion and 

Out of Order Completion. 

5. The proposed scheme is verified to be better than other schemes. It is 

compared with the other schemes, regarding to the hardware components. 

Results and analysis are introduced.  

6. As a conclusion, a comparative analysis for all schemes used is presented and 

analyzed. 

1.5 Organization of the Thesis 

Chapter two presents the background knowledge of the thesis. The literature 

review of the thesis is the subject of chapter three. The basic approaches for handling 

the precise interrupts in the pipelining systems are fully discussed, and expanded 

throughout the thesis. 

The implementation part of the thesis is discussed fully in chapter four and 

chapter five. Chapter four discusses the In Order Completion scheme. The Out of Order 

schemes, their full analysis and discussion are introduced in chapter five. Chapter six 
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discusses the compromised scheme, which is suggested in the thesis. The final 

implementation chapter is chapter seven; it introduces the precise interrupts handling in 

VLIW processors. 

Chapter eight contains the final conclusion of the thesis and the extensions 

suggested as a future work. 
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2. BACKGROUND KNOWLEDGE 

 This chapter is a brief review of different fundamental subjects related to the 

thesis. The basics, the terminologies, and many concepts used throughout the thesis are 

defined in the following pages. 

2.1 Pipelining 

A Pipeline is a series of stages, where some work is done at each stage. The 

work is not finished until it has passed through all stages. Pipelining is an 

implementation technique in which multiple instructions are overlapped in execution.  

A pipelined processor consists of a sequential, linear list of segments; where 

each segment performs one computational task or group of tasks. Pipelining increases 

the CPU instruction throughput; which means that a program runs faster and has lower 

total execution time. It also increases the number of instructions completed per unit of 

time. But it does not reduce the time of execution of individual instructions. In fact, it 

slightly increases the execution time of each instruction due to the overhead in the 

pipelined control.  

Pipelining is used to obtain improvements in processing time that would be 

unobtainable with existing non-pipelined technology. Similarly, the goal for the IBM 

360/91 was an improvement of one to two orders of magnitude over the 7090. 

Technology advances could only bring about a four-fold improvement. In a more recent 

example, the 6502 microprocessor had a throughput similar to the 8080 processor 

running at a clock rate four times faster. This was due to the pipelined architecture of 

the 6502 versus the non-pipelined 8080. 
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There are two types of pipelines: Instructional pipeline where different stages of 

an instruction fetch and instruction execution are handled in a pipeline, and Arithmetic 

pipeline where different stages of an arithmetic operation are handled along the 

pipeline. 

 Cycle1  Cycle2  Cycle3  Cycle4  Cycle5  

Seg #1 S1  S2  S3  S1  S2  

Seg #2   S1  S2  S3  S1  

Seg #3     S1  S2  S3  

 

Figure 2.1. Notional diagram of a pipelined processor; the segments are arranged 

vertically, and time moves along the horizontal axis. 

A pipelined processor can be represented in two dimensions, as shown in Figure 

2.1. Here, the pipelined segments (Seg #1 through Seg #3) are arranged vertically, so 

the data can flow from the input at the top left downward to the output of the pipeline 

(after Segment 3) (URL, scism). 

There are three things that one must observe about the pipeline. 

1. The work (in a computer) is divided up into pieces that fit more or less into the 

segments allocated for them. 

2. This implies that in order for the pipeline to work efficiently and smoothly, the 

work partitions must each take about the same time to complete. Otherwise, the 

longest partition requiring time T would hold up the pipeline, and every segment 

would have to take time T to complete its work. For fast segments, this would 

mean much idle time. 

3. In order for the pipeline to work smoothly, there must be few (if any) exceptions 

or hazards that cause errors or delays within the pipeline. Otherwise, the 

INPUT 

New Instruction  
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instruction will have to be reloaded and the pipeline restarted with the same 

instruction that causes the exception. There are additional problems we need to 

discuss about pipelined processors, which we will consider shortly. 

If an N-segment pipeline is empty before an instruction starts, then N + (N-1) 

cycles or segments of the pipeline are required to execute the instruction, because it 

takes N cycles to fill the pipe.  

Note that we just used the term "cycle" and "segment" synonymously. In the 

type of pipelines each segment takes one cycle to complete its work. Thus, an N-

segmented pipeline takes a minimum time of N cycles to execute one instruction. 

Pipeline Hazards 

Pipelined processors have several problems associated with controlling smooth, 

efficient execution of instructions on the pipeline.  

There are two disadvantages of pipelined architecture: 

1. The complexity. 

2. The inability to continuously run the pipeline at full speed, i.e. the pipeline 

stalls.  

There are many reasons that make pipelining not running at full speed. There is 

a phenomenon called pipeline hazards, which disrupts the smooth execution of the 

pipeline. The resulting delays in the pipeline flow are called bubbles. These pipeline 

hazards include 
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1. Structural Hazards: occur when different instructions collide while trying to access 

the same piece of hardware in the same segment of pipeline. Having redundant 

hardware for the segments wherein the collision occurs can alleviate this type of 

hazard. Occasionally, it is possible to insert stalls or reorder instructions to omit this 

type of hazard.  

2. Data Hazards: occur when an instruction depends on the result of a previous 

instruction still in the pipeline, where the result has not yet been computed. The 

simplest remedy is to insert stalls in the execution sequence, which reduces the 

pipeline's efficiency. The solution to data dependencies is two fold. First, one can 

forward the result of the Arithmetic and Logic Unit (ALU) to the write back or data 

fetch stages. Second, in selected instances, it is possible to restructure the code to 

eliminate some data dependencies.  

3. Control Hazards: can result from branch instructions. The branch target address 

might not be ready in the time for the branch to be taken, which results in stalls 

(dead segments) in the pipeline that have to be inserted as local wait events, until 

processing can resume after the branch target is executed. Control hazards can be 

alleviated through accurate branch prediction (which is difficult), and by delayed 

branch strategies.  

These issues can successfully be dealt with. But detecting and avoiding the 

hazards lead to a considerable increase in hardware complexity. The control paths 

controlling the gating between stages can contain more circuit levels than the data paths 

being controlled.  The processor can stall on different events:  

1. A cache misses. A cache miss stalls all the instructions on pipeline both before 

and after the instruction causing the miss.  
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2. A hazard in pipeline. Eliminating a hazard often requires that some instructions 

in the pipeline allowed proceeding while others be delayed. When an 

instruction is stalled, all the instructions issued later than the stalled instruction 

are also stalled. Instructions issued earlier than the stalled instruction must 

continue, since otherwise the hazard will never be cleared. 

In pipelining, there is a considerable increase in hardware complexity. Other 

problem arises when a branch instruction comes along; it is impossible to know in 

advance, which path the program is going to take and, if the machine guesses wrong, all 

the partially processed instructions in the pipeline must be replaced.  

When a data dependency does occur, there are two possible strategies: 

1. Detect the data dependencies and hold up the pipeline completely until the 

dependencies have been resolved (by instruction already in the pipeline being 

fully executed). 

2. Allow all instructions to be fetched into the pipeline, but only allow 

independent instructions to proceed to their completion, and delay instructions, 

which are dependent upon other, not yet, executed (Barry, 1996). 

Practically there are four types of data dependency, which are: 

1. Read-After-Write (RAW): it exists if a read operation occurs before a previous 

write operation has been completed, and hence the read operation would obtain 

an incorrect value (a value not yet updated). 

2. Write-After-Read (WAR): it exists when a write operation occurs before a 

previous read operation has time to complete, and again the read operation 

would obtain an incorrect value (a prematurely updated value).  
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3. Write-After-Write: it exists if there are two write operations upon a location 

such that the second write operation in the pipeline completes before the first. 

Hence the written value will be altered by the first write operation when it 

completes. 

4. Read-After-Read: in which read operations occur out of order, doesn’t normally 

cause incorrect results (Barry, 1996). 

Out-Of-Order Execution 

Data dependencies and different latencies of the functional units can cause 

additional delays, which reduce performance. In order to eliminate these delays, the rule 

of in-order execution of all instruction phases must be dropped. The result is an out-of-

order execution algorithm. An out-of-order execution algorithm tries to increase 

performance by distributing the instructions among the available hardware components 

regardless of their original order. There are two main requirements for such an 

algorithm: 

• The algorithm must maintain data consistency. 

• The algorithm is supposed to achieve a high utilization of the functional units to 

reduce the delays. (Daniel et al., 2001) 

Pipeline Performance Analysis 

When designing instruction sets for pipelining, there is a set of guidelines that 

can be used, as follows: 

1. Avoid variable instruction lengths whenever possible:  
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a. Variable length instructions complicate hazard detection and precise exception 

handling.  

b. Sometimes it is worth to use variable instruction lengths, because of 

performance advantages, i.e., caches.  

i. If were used frequently, the added complexity is dealt with by freezing the 

pipeline.  

2. Avoid sophisticated addressing modes:  

a. Addressing modes that update registers (post-auto increment) complicates 

exceptions and hazard detection.  

b. It also makes it harder to restart instructions.  

c. Allowing addressing modes with multiple memory accesses also complicates 

pipelining.  

3. Don't allow self-modifying code:  

a. Since it is possible that the instruction being modified is already in the pipeline, 

the address being written must constantly be checked.  

i. If it is found, then the pipeline must be flushed or the instruction is updated!  

b. Even if it's not in the pipeline, it could be in the instruction cache.  

4. Avoid implicitly setting condition codes (CCs) in instructions:  

a. This makes it harder to avoid control hazards since it's impossible to determine 

if CCs are set on purpose or as a side effect.  

b. For implementations that set the CC almost unconditionally:  

i. Makes instruction reordering difficult, since it is hard to find instructions that can 

be scheduled between the condition evaluation and the branch. 
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Performance analysis helps one to intelligently determine whether or not a given 

processor is suitable computationally for a specific application as discussed fully in 

(Schmalz, 1998).  

 

Effect of Exceptions 

For purposes of discussion, assume that we have M instructions executing on an N-

segment pipeline with no stalls, but that a fraction fex of the instructions raise an 

exception in the EX stage. Further assume that each exception requires that 

(a) The pipeline segments before the EX stage be flushed,  

(b) The exception be handled, requiring an average of H cycles per exception, then 

that 

(c) The instruction causing the exception and its following instructions is reloaded 

into the pipeline.  

Exceptions as Hazards 

Hardware and software must work together in any architecture, especially in a 

pipeline processor. Here, the processor control must be designed so that the following 

steps occur when an exception is detected:  

• Hardware detects an exception (e.g., overflow in the ALU) and stops the offending 

instruction at the EX stage.  

• Pipeline loader and scheduler allow all prior instructions (e.g., those already in the 

pipeline in MEM and WB) to complete.  
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• All instructions that are present in the pipeline after the exception is detected are 

flushed from the pipeline.  

• The address of the offending instruction (usually the address in main memory) is 

saved in the EPC register, and a code describing the exception is saved in the Cause 

register.  

• Hardware control branches to the exception handling routine (part of the operating 

system).  

• The exception handler performs one of three actions:  

1. Notify the user of the exception (e.g., divide-by-zero or arithmetic-overflow) then 

terminate the program; 

2. Try to correct or mitigate the exception then restart the offending instruction; or  

3. If the exception is a kind interrupt (e.g., an I/O request), then save the 

program/pipeline state, service the interrupt request, then restart the program at 

the instruction pointed to by EPC + 4. (M.S Schmalz, 1998).  

In any case, the pipeline is flushed as described.  

In general, we can say that, if a pipeline has N segments, and the EX stage is at 

segment 1 < i < N, then two observations are key to the prediction of pipeline 

performance:  

• Flushing: negates the processing of the (i-1) instructions following the offending 

instruction. These must be reloaded into the pipe, at the cost of i cycles (one cycle to 

flush, i-1 cycles to reload the i-1 instructions after the exception is processed).  

• Completing: the N-i instructions that were loaded into the pipeline prior to the 

offending instruction takes N-i clock cycles, which are executed:  



www.manaraa.com

 16 

1. Prior to, or  

2. Concurrently with, the reloading of the instructions i-1 that followed the I-
th
 

instruction (in the EX stage).  

It is readily seen that the total number of wasted cycles equals 

 (i-1) + (N-i) = N - 1, which is precisely the number of cycles that it takes to set up or 

reload the pipeline.  

The proliferation of unproductive cycles can be mitigated by the following 

technique:  

1. Freeze the pipeline state as soon as an exception is detected.  

2. Process the exception via the exception handler, and decide whether or not to halt or 

restart the pipeline.  

3. If the pipeline is restarted, reload the (i-1) instructions following the offending 

instruction, concurrently with completing execution of the (N-i) instructions that 

were being processed prior to the offending instruction. 

If Step 3 can be performed as stated, then the best-case penalty is only one cycle, plus 

the time incurred by executing the exception handler. If the entire pipeline needs to be 

flushed and restarted, then the worst-case penalty is N cycles incurred by flushing the 

pipe, then reloading the pipeline after the instructions preceding the offending 

instruction have been executed. If the offending instruction must be restarted, then a 

maximum of i cycles are lost (one cycle for flush, plus (i-1) cycles to restart the 

instructions in the pipe following the offending instruction).  

2.2 Interrupts 
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Sometimes during the execution of the instructions, something interrupts the 

regular execution sequence, and control transfers to a piece of code known as the 

interrupt handler, whose purpose is to process the interrupt. The interrupt handler takes 

appropriate action, and then, possibly, allows normal execution to resume (Mayan, 

1996).  

So, interrupts, also known as faults and exceptions, are a means of breaking out 

of the normal flow of control of a code block in order to handle errors or other 

exceptional conditions. An exception is raised at the point where the error is detected; it 

may be handled by the surrounding code block or by any code block that directly or 

indirectly invoke the code block where the error occurred (Python, 2001).  

When exception occurs, pipelined control takes the following steps to save state 

safely:  

1. Turns off all writes for faulting instruction and its successors, e.g., by turning 

them into no-ops. 

2. Forces trap instruction into pipeline on next Instruction Fetch (IF). 

3. Save Program Counter (PC) of faulting instruction so that user program 

execution can restart with fetch of that instruction after Operating System (OS) 

has finished handling exception. 

If delayed branches are used, instructions in pipeline are not necessarily in 

sequence, so each PC has to be saved in step 3. Reloading PCs and restarting instruction 

stream is performed by special instructions (e.g., RFE in DLX). 

In general, an exception handler should preserve all registers. However, there 

are several special cases where you may want to squeeze a register value before 
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returning. Nevertheless, you should not arbitrarily modify registers in an exception 

handling routine unless you are intended to immediately abort the execution of your 

program.  

To properly process an interrupt, also called as exception, an interrupt handler 

must identify the interrupting instruction, determine the corrective action, and determine 

which registers should be used for input and output. While processing the interrupt, the 

handler must modify the state associated with the program. Finally, after processing the 

interrupt, it must prompt the processor to resume normal execution if appropriate. The 

hardware must provide mechanisms that enable the interrupt handler to accomplish all 

these tasks. Most processors do this by implementing precise interrupts (Mayan, 1996).  

When the interrupt handler has completed processing, it must transfer control to 

the program to resume normal execution with as little disruption as possible; thus, the 

architecture must define a restart mechanism. Together, the interrupt state specification 

and the restart mechanism define the interrupt model of the architecture. 

Normally, the program counter governs control flow through a program. As a 

result, the compiler (or programmer) knows each register’s values, the instructions that 

generated those values, and how the control can reach those instructions. Unlike a 

normal program, an interrupt handler cannot expect from where and under what 

conditions it will be invoked. However, to properly process an interrupt, the interrupt 

handler needs information about the interrupted program. So the architecture must 

specify the assumptions an interrupt handler can make about when it will be invoked 

and what the machine state will be generated at that point. This specification is the 

interrupt state specification (Mayan, 1996). 
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The constraints imposed by the interrupt handler make it clear that the interrupt 

state must meet the following requirements: 

1. All instructions that were issued before the excepting instructions could be 

complete before control enters the interrupt handler. 

2. The state should appear as it would if no instruction is issued after the excepting 

instruction. 

3. The address of the excepting instruction must be available to the interrupt 

handler. 

If the interrupt state satisfies theses conditions, the restart mechanism is obvious: 

after processing the interrupt, the handler must branch to either the interrupting 

instruction (and execute it in the new state, in which it should not cause an interrupt) or 

the succeeding instruction  (Mayan, 1996).  

When an exception is not handled at all, the interpreter terminates execution of 

the program, or returns to its interactive main loop (Python, 2001).  In a pipelined 

machine an instruction is executed step by step and is completed using several clock 

cycles. Unfortunately, other instructions in the pipeline can raise exceptions that may 

force the machine to abort the instructions in the pipeline before they are completed.   

Interrupt Classification 

Software interrupts includes the following: 

1. I/O device request. 

2. Invoking an operating system service from a user program (system call). 

3. Breakpoint (programmer-requested interrupt). 
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4. Integer arithmetic overflow or underflow; FP arithmetic anomaly. 

5. Page fault. 

6. Misaligned memory accesses (if alignment is required). 

7. Memory protection violation. 

8. Using an undefined instruction. 

9.  Hardware malfunction. 

10.  Power failure. 

Five types can characterize the requirements on exceptions: 

Synchronous versus ِِِAِِsynchronous. 

If the event occurs at the same place every time the program is executed with 

the same data and memory allocation, the event is synchronous. With the exception of 

hardware malfunctions, devices external to the processor and memory cause 

asynchronous events. 

Asynchronous events usually can be handled after the completion of the current 

instruction, which makes them easier to handle. 

User Requested versus Coerced 

If the user task directly asks for it, it is a user-requested event. In some sense, 

user-requested exceptions are not really exceptions, since they are predictable. They are 

treated as exceptions, because the same mechanisms that are used to save and restore 

the state are used for these user-requested events. Because the only function of an 

instruction that triggers this exception is to cause the exception, user-requested 

exceptions can always be handled after the instruction has completed. 
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Coerced exceptions are caused by some hardware event that is not under the 

control of the user program. Coerced exceptions are harder to implement because they 

are not predictable. 

 

 

User Maskable versus user Nonmaskable 

If an event can be masked or disabled by a user task, it is user maskable. This 

mask simply controls whether the hardware responds to the exception or not. 

Within versus Between Instructions 

This classification depends on whether the event prevents instruction 

completion by occurring in the middle (within) of execution or whether it is recognized 

between instructions. Exceptions that occur within instructions are always synchronous, 

since the instruction triggers the exception. 

It is harder to implement exceptions that occur within instructions than between 

instructions, since the instruction must be stopped and restarted. 

Resume versus Terminate 

If the program's execution always stops after the interrupt, it is a terminating 

event. If the program's execution continues after the interrupt, it is a resuming event. 

It is easier to implement exceptions that terminate execution, since the machine 

need not be able to restart execution of the same program after handling the exception. 
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The difficult task is implementing interrupts occurring within instructions, 

where the instruction must be resumed because it requires another program to be 

invoked to save the state of the executing program. So the steps required are: 

1. Correct the cause of the exception. 

2. Restore the state of the program before the instruction that caused the exception. 

3. Start the program from the instruction that caused the exception. 

If a pipeline provides the ability for the machine to handle the exception, save 

the state, and restart without affecting the execution of the program, the pipeline or 

machine is said to be restartable. Almost all machines today are restartable, at least for 

integer pipelines, because it is needed to implement virtual memory. 

2.3 Precise Interrupts 

The definition of precise interrupt reflects execution in a sequential architecture. 

In a sequential architecture, instructions are issued serially. An instruction runs to 

completion before the next one issue. From the precise interrupt point of view, two 

types of interrupts: 

1. Detect before issue: e.g. illegal opcode, privileged instructions, some external 

interrupts. 

2. Detect during execution: e.g. page fault, arithmetic, and some external interrupts. 

When an instruction interrupts, processor hardware immediately transfers control 

to the interrupts handler. Interrupt is precise if the machine state at the time of the 

interrupt is identical to the state that would exist if the implementation were sequential. 

This state, known as precise state, meets the following conditions: 
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1. All instructions that issue prior to the interrupting instruction have completed. 

2. No instruction has been issued after the interrupting instruction. 

3. The program counter points to the interrupting instruction, is the precise 

program counter. 

If all the implementation’s interrupts are precise, we say that it follows the 

precise interrupt model (Mayan, 1996). The conditions, under which precise instructions 

are either necessary or desirable, are:  

1. For I/O and timer instruction, (external), precise process state makes restarting 

possible. 

2. In virtual memory system, (internal), precise instructions allow a process to be 

correctly restarted after a page fault has been serviced. 

3. For software debugging, it is desirable for the saved state to be precise. This 

information can be helpful in isolating the exact instruction and circumstances 

that cause the exception condition. 

4. For refined recovery from arithmetic exception, software routines may be able to 

take steps, rescale floating-point numbers, to allow a process to continue. Some 

end cases of modern floating-point arithmetic systems might best be handled by 

software, gradual underflow in the proposed IEEE floating point standard. 

5. Unimplemented opcodes can be simulated by system software in a way 

transparent to the programmer if interrupts are precise. So, lower performance 

models of architecture can maintain compatibility with higher performance 

models using extended instruction sets. 

6. Virtual machine can be implemented if privileged instruction-faults cause 

precise instructions. 
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We can implement the precise interrupt model simply on a non-pipelined, 

sequential architecture implementation. But modern processors use pipelining to 

improve performance, complicating implementation of precise interrupts (Mayan, 

1996). 

Unfortunately, pipelining is an important mechanism for improving processor 

performance, and interferes with the processor’s ability to handle precise interrupts. 

Techniques that implement precise interrupts on pipelined processors use a large 

amount of extra hardware or reduce performance, or both. To gain some insight into the 

problem, there is a taxonomy that divides interrupts into four classes. For each class we 

ask the following questions: 

1. Can we interrupt some interrupts precisely yet avoid the performance and /or 

hardware penalty? 

2. Which interrupts are essential for machine operations? Conversely, which 

interrupts can we implement imprecisely without impairing the machine’s 

ability to run programs correctly? 

3. What benefits can we gain from discarding precision for some interrupts? Since 

we must implement the rest of the interrupts precisely, will the implementation 

still incur a similar performance and/or hardware cost? 

The characteristics listed for the precise-interrupt model are identical to the 

requirements of the general interrupt handler.  

2.4 Imprecise Interrupts 

Because of the multiple instructions that can be in various stages of execution at 

any given moment in time, handling an interrupt is one of the more complex tasks. An 
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imprecise interrupt can result from an instruction exception while the precise address of 

the instruction causing the exception is not known! The difficulty arising from 

imprecise interrupts should be viewed as a complexity to be overcome, not as an 

inherent defect in pipelining.  

Some imprecise interrupts are guaranteed to be precise. So, we can implement it 

as follows: when an instruction interrupts the processor, if any instruction is issued after 

the interrupting instruction has completed, all instructions between the interrupting 

instruction and the last completed instruction run to completion. Control transfers to the 

interrupt handler in this state. Normal execution can resume after the last completed 

instruction (Mayan, 1996).  

Usually, an instruction will cause an interrupt is determined in the nth cycle of 

its execution. If this n is no longer than the number of cycles necessary to execute the 

shortest instruction, that interrupt is precise. No instruction is issued after the 

interrupting instruction can have completed, so only instructions issued before the 

interrupting instruction will run to completion (Mayan, 1996). 

2.5 Tomasulo’s Algorithm 

Tomasulo called his mechanism the Common Data Bus, because the mechanism 

is more expansive than a simple bus, it is usually referred to as Tomasulo’s algorithm 

instead. The underlying principle used is this: when the data is stale, keep track of 

where new data will be coming from. Here is how the principle is used. The register file 

holds data, for brief windows in time, data words in the register file are stable, and in 

that they are soon to be overwritten by an instruction that has not yet completed. Take, 

for example, the following code:  
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lw r1, 16(r2) 

addi r1, r1, 1 

Ignoring dependences between the instructions, the load instruction would be 

likely to take longer time than the add-immediate, because the load performs both an 

add-immediate and a memory-access: it requires an add-immediate of register 2 with 

the value 16 to generate the load address. Only after the address is generated, the 

memory access begins. Therefore, by the time that the addi is ready to read the value of 

r1 out of the register file, it is likely that the load is still in mid-execution. If this is the 

case, then r1 contains stable data that cannot be used for computation by the addi or any 

other instruction that follows the load. Previous architectures would either stall in this 

instance or use forwarding paths in the pipeline.   

Tomasulo’s algorithm uses a different mechanism: instead of keeping track of 

the data in r1, it keeps track of the data’s source, i.e. the load instruction which will 

update r1 in the near future. When the load is decoded, it is en-queued in a numbered 

reservation station awaiting execution; r1 is tagged as invalid; and the register file holds 

the reservation station Identity (ID) instead of r1’s contents. 

Therefore, rather than keeping track of the data value, the register keeps track of 

where the new data will come from. When the addi instruction is decoded and en-

queued, it reads the ID from the register file and is placed in its own reservation station, 

knowing that one of its operands is invalid, but also knowing the unique ID of the 

instruction that will produce the operand. That unique ID is the ID of the reservation 

station holding the load instruction.  

This information is used to forward operands from the functional units to the 

instructions waiting data in reservation stations. Whenever a functional unit produces a 
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result value (either an ALU result or a load-word memory request), the functional unit 

producing the value broadcasts that value as well as the corresponding instruction’s ID 

on the Common Data Bus. All instructions sitting in reservation stations look to this bus 

and gate in the data whenever one of its operands is invalid and the corresponding tag 

matches the ID of the data on the common data bus. As soon as an instruction’s 

operands are all valid, the instruction is ready to execute, whether this is before or after 

the instructions that come before it in the instruction stream. The register file also 

monitors this bus, and if the ID on the bus matches the ID in any invalid register, the 

data is gated into that register, and the register is marked as valid. 

The architecture is very simple but extremely powerful and capable of resolving 

all dependencies through the register file. It also provides a form of register renaming 

that allows the simultaneous or out-of-order execution of multiple reads and writes to 

the same register. The algorithm, as well as numerous variations on it, has become a 

stable in modern high-performance CPU design.  

2.6 Register Renaming 

In the past, renaming has been implemented in the instruction dispatch stage. 

This stage is considered to be one of the most critical stages in superscalar processors in 

determining cycle time. The renaming process can be implemented in the instruction 

fetch stage. Mapping takes place before set selection; this means that all sets go through 

the mapping logic, which must be replicated according to the associativity of the cache. 

The scheme may require that each source register name be mapped using the 

mapping table to its associated physical register. If there are 32 arhitected registers, the 

mapping is implemented in the mapping logic as a 32:1 mux. Using a pass-transistor 
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based multiplexer implementation in CMOS; this will probably involve 4 logic stages. 

The source register fields must control several multiplexes; this requires they to be 

initially powered up to obtain a fanout estimated to be about 40. 

The critical path is determined either by the tag match logic required for cache 

operations or by the mapping logic discussed previously. The path through the tag 

match logic is influenced by four factors, namely, the associativity of the cache, its size, 

the address size, and the fan-out requirements of the tag compared. The tag match logic 

starts off by checking, depending on the cache size, possibly the high 18-24 bits of the 

address and the program counter for equality, which can be implemented in about 4 

stages of logic stages. The result bits then serve as control for a number of multiplexes. 

If the implementation attempts to issue 4 instructions per cycle, this implies a fanout of 

about 1284. This requires a powering tree that will add 2-3 logic stages, assuming some 

of the powering is buried in the compare. 

Putting all the requirements together, we observe that both paths require about 

the same number of logic stages: about 6-7. This suggests that, assuming CMOS 

technology and a set associative cache, the proposed scheme may not increase the 

machine cycle time. 

Notice that only the source registers go through the mapping logic; specifically, 

the time at which the opcodes become available to the instruction decode stage does not 

change. This may allow us to overlap some of the mapping with the initial phases of the 

instruction decode in the decode stage, if necessary. 

None of the other mechanisms required is added to the cycle time. Updating the 

map to reflect any remapped registers is not time critical. It can be done in the next 
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cycle, in parallel with the I-cache access. The mechanism to free physical registers is 

also not time-critical. All that matters is that there be enough free physical registers, not 

which ones, i.e. throughput matters, not latency. Expanding the number of physical 

registers by the number required per cycle can compensate adding an extra cycle to the 

time to free a physical register. 

Generally, there will be several instructions with no output register, e.g., 

branches, and some with only one input register. Superscalar issue adds a related 

problem if some source register name is the same as the result register name of some 

instructions fetched at the same time, but prior in the program order, it must use the new 

physical register allocated to that register name, rather than the entry in the mapping 

table. It would seem that we would need to do some decoding in the instruction-fetch 

stage. 

However, we can delay these decisions till the next cycle. If the instruction did 

not have an output, or multiple instructions had the same output register, the mapping is 

updated appropriately. Thus, decodes are not added to the critical path. A similar fix up 

has to be performed in the instruction. The fanout can be of this order, or worse, even if 

fewer instructions are issued per cycle, depending on the physical organization and read 

out of the cache arrays, decode stage. Determining the appropriate register to be used 

can be done in parallel with register access. If the physical register, which is provided 

by mapping table, is incorrect; the value was read can be discarded. This results in no 

loss in performance. Either the instruction did not need that value, or the wrong register 

was accessed because some other instructions fetched in parallel had the same output 

register name. In the second case, the value needed is the one that will be provided by 

the other instruction. That instruction, obviously, cannot have been completed, so the 
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instruction with the incorrectly mapped register cannot be issued immediately, anyway. 

Thus, there is at least a full cycle in which to determine the correct register mapping. 

One critical path in register renaming is the path from the instruction fetch to 

execution. On a vanillaRISC processor, this path is implemented in two stages, 

Instruction-Fetch and Instruction-Decode/Operand-Fetch. Logically, it follows the 

following steps: 

Fetch ~ Decode ~ ReadValues ---* Execute 

Adding renaming adds an extra step: 

Fetch ~ Decode ~ Rename ~ ReadValues ~ Execute 

If these steps are implemented serially, obviously either an extra stage will be 

required, as in [2, 9], or the cycle-time of the existing two stages will be increased. The 

only way to avoid this is to implement some of the steps in parallel. The time to perform 

an associative lookup is obviously going to be greater than that of a register access. It 

may turn out that the associative access will end up increasing the cycle time. 

 The mapping mechanism used can be executed in parallel with elements of the 

instruction fetch stage without impacting the critical path through that stage. The rest of 

the path should not change from that in a vanillaRISC processor. In particular, reading 

values involves a normal register access. Associative lookup requires content-

addressable storage to be implemented efficiently. This storage requires complex and 

expensive hardware. 

 One major source of complexity is determining when physical registers can be 

reused. This happens when the register has been written to, there be no outstanding 
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reads and the associated architect register has been remapped. These must all be true if 

all instructions up to and including the instruction that displaced the physical register 

has been completed. Clearly, the instruction that allocated the physical register must 

have been completed, and therefore the register must have been written to. All the 

instructions that could access this register must precede the displacing instruction, and 

since they must have completed, all reads of the register must have been accomplished. 

And, of course, the register must have been remapped. This criterion is fairly simple to 

implement. 

2.7 VLIW Processors 

 A VLIW processor has many independent functional units but it doesn't try to 

schedule them dynamically. Each clock cycle the processor fetches a very long 

instruction formatted with a separate field for each functional unit. Control is very 

simple: each instruction field is sent to its respective functional unit. The processor 

usually has no logic to detect hazards and cause stalls so the compiler must schedule the 

code so no hazards will occur at run time (Kenneth E. Batcher, 2002).  

Limitations in Multiple-Issue Processors 

The VLIW processor just described issues up to four instructions per clock 

cycle: will a multiple-issue processor with ten times as many resources, issuing 40 

instructions per clock cycle, run ten times as fast. The following factors make it difficult 

to scale up a multiple-issue processor (Kenneth E. Batcher, 2002):  

- Limitations of Instruction Level Parallelism (ILP) in programs: Each program 

has only so much ILP. Most of the ILP is in parallelizable loops and some loops 

aren't parallelizable.  
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1. Some fraction of a program is not parallelizable so Amdahl's Law limits 

the speedup: the more one speeds up the parallelizable part of a program 

the less time a processor spends in that part.  

2. Pipeline depth magnifies the problem. To get good usage of the resources 

one must find about:  

o (Number of functional units) * (average pipeline depth)  

o Independent operations in the code. The higher this product the less likely 

the code has that many independent operations.  

o In general, large problems have more ILP than small problems. A 

processor with a large number of instruction issues per clock cycle needs 

large problems to solve: small problems will waste its resources. 

Manufacturers of such machines are lucky that there are always a number 

of customers with very large problems to solve.  

3. Building the hardware: Scaling up the number of functional units (issues per 

cycle) adds a burden to other hardware resources.  

o Doubling the number of functional units doubles the number of operands fetched 

and written each clock cycle: each register file needs twice as many registers, 

twice as many read ports, and twice as many write ports. Twice as many 

instructions must be issued so twice as much code must be fetched each cycle. 

Memory data traffic is also doubled: twice as many memory operands to 

read/write each cycle so the functional units aren't starved for data.  

o It's much easier to add more functional units than it is to scale up the other 

hardware resources. Memory and register file technology puts a limit on how far 

a multiple-issue processor can be scaled up.  
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4. Superscalar Limitations: Dynamic scheduling imposes a limit to the number of 

functional units: each clock cycle it compares all result destinations with all 

instructions waiting for source operands. Doubling the number of functional 

units quadruples the complexity of dynamic scheduling; tripling the resources 

multiplies the complexity nine-fold. The cost of dynamic scheduling grows as 

the square of the number of functional units.  

- VLIW Processor Limitations: Static scheduling by the compiler keeps all 

functional units in lock step. If any functional unit stalls (for a cache miss, page 

fault, etc.) all other functional units must stall as well: the number of functional 

units multiplies the cost in performance for any stall.  

1. Changing the number of functional units in a VLIW processor changes the 

binary code: binary code for a scaled-up version is not compatible with code for 

a low-cost scaled-back version.  

2. Compiler Support for Exploiting ILP 

Detecting and Eliminating Dependencies 

Dependencies must be detected in order to re-schedule code, determine which 

loops have parallelism, and to eliminate name dependencies (Kenneth E. Batcher, 

2002).  

A data dependence is relatively easy to find if the operand producing the 

dependence is a scalar with the same name in all instructions that define and use it. 

Arrays complicate detection: x [i] and x [j] refer to the same variable when i = j. 

Pointers in languages like C are even worse: several pointers can point to the same 

variable.  
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A loop is a good place to look for ILP: if there is no cycle of dependencies the 

iterations of the loop can be run in parallel. Consider the following example:  

For i: = 1 to 100 do  

Begin 

A [i]: = B [i] + C [i]; 

D [i]: = A [i] * E [i]; 

End; 

There are no loop-carried dependencies so the 100 iterations can be run in 

parallel but the two statements in the loop body can't be interchanged because of the 

data dependence involving A [i]. Optimum machine code for the second statement in 

the loop body would not explicitly load A [i] from memory but use the result of the first 

statement (Kenneth E. Batcher, 2002).  

Software Pipelining 

Software pipelining is a technique for reorganizing loops so that each iteration 

of the new loop contains instructions from different iterations of the original loop.  

Software pipelining and loop unrolling are two techniques for hiding pipeline 

latencies. Software pipelining uses less code in the loop body and less registers but loop 

unrolling also reduces loop overhead. For pipelines with very long latencies a compiler 

might want to use both techniques (Kenneth E. Batcher, 2002).  

Trace Scheduling 

For processors with many instruction issues per clock cycle a compiler might 

have to resort to trace scheduling to find enough ILP to keep the processor busy: it 

extends loop-unrolling by finding parallelism across other conditional branches besides 

loop branches.  
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The effectiveness of trace scheduling depends on how well the compiler can 

predict the most likely outcomes of conditional branches. From these predictions it 

selects a trace: a sequence of basic blocks that the processor will frequently follow. 

Code in the trace is then re-scheduled to achieve a high issue rate (Kenneth E. Batcher, 

2002).  

Hardware Support for Extracting More Parallelism 

The effectiveness of the compiler optimizations is limited when the behavior of 

branches is not predictable. Here we show some ways of modifying the hardware to 

exploit ILP (Kenneth E. Batcher, 2002).  

Conditional Instructions 

A compiler can use conditional instructions for speculative code as long as the 

exception behavior of a program is not changed. When the condition is false, a 

conditional instruction should act like a true no operation (nop) and never cause an 

exception. When the condition is true, exceptions are allowed. Conditional instructions 

are helpful for implementing short alternative control flows. Control dependencies are 

replaced by data dependencies, which makes scheduling easier. The following factors 

limit the utility of conditional instructions (Kenneth E. Batcher, 2002).  

• Time is still consumed when the condition is false. This is important when 

implementing a long alternative control flow: the same time is always consumed 

whether control goes through the alternative or not.  

• They only test one condition. Additional instructions are required to test the 

AND or OR of several conditions.  

• Only a few instructions can be made conditional without impacting clock rate.  
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Compiler Speculation with Hardware Support 

There are two constraints that should be satisfied when instructions are moved. 

Whenever a compiler speculates it violates the constraint, where an instruction that's 

control dependent on a branch can't be moved to a place where it is no longer control 

dependent on that branch. The constraint can be violated as long as the program still 

runs correctly: that is, the exception behavior and the data flow of the program are 

preserved (Kenneth E. Batcher, 2002).  

Preserving the exception behavior of a program imposes a severe restriction on 

the amount of speculation a compiler can perform. In particular, all memory reference 

instructions and most Floating Point (FP) instructions can cause exceptions so a 

compiler can't execute any of these instructions speculatively (Kenneth E. Batcher, 

2002).  

Compiler speculation can be allowed to modify the exception behavior of a 

program as long as the program still runs correctly. There are three methods to allow 

this, so the compiler can speculate more ambitiously:  

1. Hardware-Software Cooperation for Speculation: Each program-caused 

exception is either resuming or terminating.  

2. A resuming exception is handled in the normal way: the Operating System (OS) 

trap-handler is called to fix the cause and the program is resumed with the 

offending instruction. The program will still run correctly.  

3.  A terminating exception is handled differently: rather than terminating the 

program, the program resumes with the offending instruction producing an 
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incorrect result. If a speculative instruction caused the terminating exception the 

incorrect result is not used and the program still runs correctly.  

There are two problems with this method of hardware support for compiler 

speculation:  

4. Speculative coding may suffer a higher frequency of resuming exceptions to 

slow it down. Instead of improving performance with speculative code the net 

result could be a loss in performance!  

5. Bugs in code may not be visible.  

This method of hardware support is only acceptable if it can be turned off so 

fatal errors always terminate programs. Every programmer should use this hardware 

mode to thoroughly debug a non-speculative machine version of the source code before 

compiling a speculative machine version (Kenneth E. Batcher, 2002).  

• Speculation with Poison Bits: Poison bits make code bugs more visible. A bit is 

added to each machine instruction to flag it as speculative or non-speculative.  

1. A terminating exception caused by a non-speculative instruction is always fatal 

and the program is terminated with a fatal error message.  

2. An exception caused by a speculative instruction is never fatal and the program 

continues: an exception that's normally terminating is changed to a resuming 

exception with the offending instruction producing a bad result.  

3. To flag a bad result, a poison bit is added to every register. Only speculative 

instructions are allowed to use poisoned register values: a poisoned source 

operand produces a poisoned result. If a non-speculative instruction tries to use 

a poisoned register value, a terminating exception occurs. Store-to-memory 
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instructions are always non-speculative so memory can neither store poisoned 

values nor any values at poisoned addresses.  

4. One complication with this method of hardware support is when the OS saves 

and restores registers: poison bits must also be saved and restored.  

• Speculative Instructions with Renaming: With the two previous methods the 

compiler has to rename registers whenever scheduling creates WAR and/or 

WAW hazards: ambitious speculation may use up too many registers. An 

alternative is to provide buffering and renaming in hardware much as 

Tomasulo's algorithm does.  

1. An instruction that's control dependent on a branch is said to be boosted if the 

compiler schedules it to execute before the branch. A boosted instruction is 

flagged to indicate whether the compiler is assuming the branch will be taken or 

the branch will be untaken. The result of a boosted instruction can be forwarded 

to other boosted instructions (assuming the same branch outcome) but it is not 

stored in a register until the actual branch outcome is known: if the branch 

outcome agrees with the assumption the result of a boosted instruction is stored 

in the destination register; otherwise the result is ignored (Kenneth E. Batcher, 

2002).  

2. The method can be extended to allow boosting instructions across multiple 

branches.  

Hardware-Based Speculation 
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Hardware-based speculation is complex and requires substantial hardware 

resources but it has some advantages over compiler-based speculation (Kenneth E. 

Batcher, 2002):  

1. Hardware can disambiguate memory references to allow greater speculation.  

2. Hardware branch-prediction can be more accurate than compiler branch-

prediction.  

3. Precise exceptions are easier to generate.  

4. No compensating or bookkeeping code is required.  

The basic idea is simple: let instructions execute in any order but don't commit 

their results to registers or memory until it's safe to do so.  

Advantages of VLIW (Wen-mei W. Hwu. 1999): 

� No runtime dependence checks against previously or simultaneously issued 

operations  

� No runtime scheduling decisions. 

The disadvantages can be summarized as: 

� No tolerance for different or variable latencies.  

� No object code compatibility 

� No tolerance for a difference in the set of functional units (Wen-mei W. Hwu. 

1999). 

A conventional sequential program has a Unit Assumed Latency (UAL). The 

semantics of the program are understood by assuming each instruction is completed 
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before the next one is issued. There is another scheduling model, which is called Non-

UAL (NUAL) scheduling models. It consists of two models (Wen-mei W. Hwu., 1999): 

1. Equals (EQ) Model  

o  Each operation takes exactly its specified latency i.e. the destination register 

will not be written until latency number of cycles. 

o Produce slightly shorter schedules due to register reuse 

2. Less-Than-or-Equals (LEQ) Model  

o An operation may take than or equal to its specified latency i.e. the destination 

register can be written any time from issue to latency cycles  

o Simplifies the implementation of precise interrupts Provides binary 

compatibility when latencies are reduced 

VLIW as an Architecture  

1. Defining attributes  

o  NUAL: non-unit assumed latencies. 

o Multiop: multiple simultaneously issueable operations per instruction: 

a. No flow dependencies between these Operations. 

b. Output and anti-dependencies specified by the assumed latencies  

2.  Advantages over a sequential architecture (Uniop, UAL)  

a. Explicitly provides independence information in the program  

b. No runtime dependence checks against previously or simultaneously 

issued operations  
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c. Economy of register usage  

Permits an especially simple mechanism for object code compatibility (Wen-mei W. 

Hwu, 1999). 
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2.8 Summary 

Four major subjects are discussed in this chapter: the pipelining with, the 

interrupts as a general concept, then the concept of the precise interrupts and all related 

difficulties and concepts are fully pointed out. The concept of the imprecise interrupts 

was stated in brief. Finally, the Tomasulo’s algorithm and register renaming are 

discussed. 
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3. SCHEMES FOR HANDLING PRECISE INTERRUPTS 

IN PIPELINING SYSYEMS 

 

3.1 Preface 

This chapter presents different schemes for handling precise interrupts in pipelining 

systems that is used throughout the thesis.  

There are several solutions to the problem of the study. The following are the 

main solutions in general. 

First Solution:  

• Ignore the problem (imprecise exceptions):  

1. This may be fast and easy, but it's difficult to debug programs without precise 

exceptions.  

• Many modern CPUs, i.e. DEC Alpha 21064, IBM Power-1 and MIPS R800, 

provide a precise mode that allows only a single outstanding Floating Point (FP) 

instruction at any time.  

1. This mode is much slower than the imprecise mode, but it makes debugging 

possible.  

Second Solution: 

• Buffer the results and delay commitment:  
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1. In this case, the CPU doesn't actually make any state (register or memory) changes 

until the instruction is guaranteed to finish.  

2. This becomes difficult when the difference in running time among operations is large.  

• Lots of intermediate results have to be buffered (and forwarded, if necessary).  

Variations of the second solution:  

• History file:  

1. This technique saves the original values of the registers that have been changed 

recently.  

2. If an exception occurs, the original values can be retrieved from this cache.  

3. Note that the file has to have enough entries for one register modification per 

cycle for the longest possible instruction.  

4. Similar to the solution used for the VAX for auto-increment and auto-decrement 

addressing.  

• Future file:  

1. This method stores the newer values for registers.  

2. When all earlier instructions have completed, the main register file is updated 

from the future file.  

3. On an exception, the main register file has the precise values for the interrupted 

state.  
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Third Solution:  

• Keep enough information for the trap handler to create a precise 

sequence for the exception:  

1. The instructions in the pipeline and the corresponding PCs must be saved.  

2. After the exception, the software finishes any instructions that precede the 

latest instruction, which is completed.  

3. Technique is used in the SPARC architecture.  

Fourth Solution:  

• Allow instruction issue only if it is known that all previous instructions will 

complete without causing an exception.  

1. The floating point functional units must determine if an exception is possible 

early in the EX stage, first couple clocks, in order to prevent the following 

instructions from completing.  

2. Sometimes it requires stalling the pipeline in order to maintain precise 

interrupts.  

3. The R4000 and Pentium solution.  

3.2 In-order completion 

In-order execution does not fully utilize all functional parts of a CPU. The rule 

of in-order execution prohibits that subsequent instructions overtake previous 

instructions. Clearly, if instructions completed in the order they were issued, we could 

handle an interrupting instruction by allowing it to reach its last pipeline stage and then 
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preventing the completion of all subsequent instructions. This scheme guarantee precise 

state. The original MIPS implementation used a similar scheme (Mayan, 1996). 

Instructions modify the process state only when all previously issued 

instructions are known to be free of exceptions. This strategy is most easily 

implemented when pipeline delays in the parallel functional units are fixed. That is, they 

do not depend on the operands, only on the function. Thus, the result bus can be 

reserved at the time of issue. However, forcing in-order completion can degrade 

performance (Mayan, 1996). 

3.3 Reorder Buffer Scheme 

 The reorder buffer is a FIFO (First In First Out) queue that is placed between 

the output of the functional units and the write-back port of the register file. It keeps the 

register file in a precise state. The entries of the reorder buffer are en-queued when 

instructions are issued, each entry contains the following fields: destination register, 

result value, PC, interrupt status, valid. Instructions are removed from the head of the 

queue when they have valid result values after they have written back their results.  

Exceptions are checked for an instruction when the instruction reaches the head of the 

queue. If an instruction causes an exception all entries behind it in the reorder buffer are 

discarded and do not write back their results. Bypassing the result values from the 

reorder buffer is required for maximum performance. 

The reorder buffer was developed to solve the problem that, in many pipelined 

computers even those with in-order instruction issue, execution results are frequently 

produced out-of-order. For example, this happens when functional units have different 

latencies. This is what Smith and Pleszkun mean by “pipelined” processors: in-order 



www.manaraa.com

 

 

46 

 

pipes with functional units that have different latencies. In previous machines, results 

were typically written to the register file as soon as they were produced, and if the 

results were produced out-of-order, they could therefore update machine state out-of-

order. Such an organization causes problems in the case of handling precise interrupts, 

during which the machine state is required to reflect that of a sequential machine with 

in-order instruction completion, otherwise the interrupt is not considered “precise”. 

Smith and Pleszkun solve the problem by providing a mechanism to allow instructions 

that generate results out-of-order to be completed in-order. Changes to the state of the 

machine (register file, memory system) are limited to the time of instruction 

completion, which is handled in program order, and therefore the state of the machine 

always reflects that of a sequential implementation (UMD, 2000). 

The fundamental idea is coupling of instruction execution and instruction 

completion. Whereas in previous pipeline organizations execution and completion could 

be treated as an atomic multi-cycle operation, the reorder buffer separates out the 

concept of instruction completion as a phase of the instruction life cycle that may or 

may not happen on the cycle following the generation of results. Thus, the reorder 

buffer behaves like a holding tank for instructions while they are in the process of being 

executed (including decode, operand fetch, execution by an ALU, possible memory 

access, and write-back to the register file). It is easy to imagine many possible structures 

that would perform such a function (UMD, 2000). 

Thus, the reorder buffer keeps the original program order of the instructions 

after instruction issue and allows result serialization during the retire stage. State bits 

are stored if an instruction is on a speculative path, and when the branch is resolved, if 

the instruction is on a correct path or must be discarded. When an instruction completes, 
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the state is marked in its entry. Exceptions are marked in the reorder buffer entry of the 

triggering instruction. Reorder buffer entries are allocate in the first issue stage and de-

allocated serially when the instruction retires. 

When an exception is detected, a flag in the instructions’ reorder buffer entry is 

set indicating the exceptional status. Delaying the handling of the exception ensures that 

the instruction didn’t execute along a speculative path. While the instructions are being 

committed, the exception flag of the instruction is checked (UMD, 2000).   

To implement out-of-order, issue requires a buffer, or instruction window 

between decoder and functional units, as shown in figure 5.5, which is discussed in. 

Here, the Reorder Buffer is combined with the Tomasulo’s algorithm. The Advantages 

of Tomasulo’s Algorithm: 

1. Distribution of hazard detection and control logic (Because of distributed 

reservation stations and Common Data Bus (CDB): Multiple instructions 

waiting on a single operand can all start execution as soon as the operand is 

broadcasted on the common data bus). 

2. Elimination of stalls for WAW and WAR hazards (Because of register 

renaming and storing operands into reservation stations as soon as available). 

But how do we implement this instruction window? We have two choices: 

1. Centralized Window: Buffer every instruction for every functional unit in a 

common window.  

2. Reservation Stations (RSs): Distribute individual buffers to each of the FUs.  
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The number of instructions found in the instruction window at any given time is 

greater than the maximum fetch and decode rate. Potentially, we can issue more 

instructions in a given cycle than this maximum fetch/decode rate. In general, the 

maximum number of instructions issued in one cycle can be significantly higher than 

the average instruction execution rate (e.g. more than a factor of 2).  

 

 

 

 

 

 

 

There are some implications of this, some are: 

� To maximize performance, we need to support a high instruction issue rate.  

� To do this requires simultaneous communication of much operand value to 

different functional units. Each instruction issued must be accompanied by all of 

its required operands.  

� With a central window, this busing is routed to all functional units.  

� With a distributed instruction window (i.e. reservation stations) the window is 

filled at the average instruction execution rate not the peak rate.  
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We should note that, in general, if the window is partitioned using RSs, the total 

size of the instruction window must be larger than if it were centralized in order to 

support the same amount of look-ahead. Multiple issues and forms of reservation 

stations are shown in figure 3.2. 

Another remarkable point about reservation station; is that reservation stations 

potentially reduce operand bus routing. Because reservation stations are distributed, 

they can more easily support the maximum instruction issue rate. In a given cycle, each 

RS may issue an instruction to an FU since the operands come from local reservation 

stations. Also, each FU can have a different number of reservation stations assigned to 

it. 

3.4 Reorder Buffer with Forwarding (Bypass) paths 

A new mechanism for enforcing RAW dependencies is formed; this is similar to 

the model presented by Sohi and Vajapeyam (David ,1997). 

When an instruction is being issued, the reorder buffer is searched for entries 

whose destination register field corresponds to a source operand that the instruction 

needs. If no entry in the reorder buffer matches the register number then the result has 

already reached the register file and the operand is read from there. If one match is 

found the instruction issue may be stalled until the reorder buffer entry contains a valid 

result, whereupon it is used as the operand for the instruction being issued (David 

,1997). 

    

a. Single, shared queue 
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(b) Multiple queues, one per instruction type. 

 

    

 

    

 

    

c. Multiple reservation station; one per instruction type. 

Figure 3.2. Forms of Reservation Station 

In order for results to be used early, bypass path may be provided from the 

entries in the reorder buffer to the register file output latches as shown in figure 4.8. 

These paths allow data being held in the reorder buffer to be used in place of register 

data. The implementation of this method requires comparator for each reorder stage and 

operand designator. If an operand register designator of an instruction being checked for 

issue matches a register designator in the reorder buffer, then a multiplexer is set to gate 

the data from the reorder buffer to the register output latch. In the absence of other issue 

blockage conditions, the instruction is allowed to be issued, and the data from the 

reorder is used prior to being written into the register file (James et al., 1988). 

There may be bypass paths form some or all of the reorder buffer entries. If 

multiple bypass paths exist, it is possible for more than one destination entry in the 
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reorder buffer to correspond to a single register. Clearly only the latest reorder buffer 

entry that corresponds to an operand designator should generate a bypass path to the 

register output latch. To prevent multiple bypassing of the same register, when an 

instruction is placed in the reorder buffer, any entries waiting the same destination 

register designator must be inhibited from matching a bypass check (James et al., 1988). 

3.5 Future File Scheme 

Typically, these and other mechanisms that perform the function of ensuring in-

order commitment of machine state are all called by the microprocessor design 

community “reorder buffers” whether the description is technically accurate or not 

(UMD, 2000). 

Reorder buffer holds only instruction execution states (results are in rename 

registers). Johnson’s description of a reorder buffer in combination with a so- called 

future file. The future file is similar to the set of rename registers that are separated from 

the architectural registers. In contrast, Smith and Pleskun described a reorder buffer in 

combination with a future file, whereby the reorder buffer and the future file receive and 

store results at the same time. Other reorder buffer type: The reorder buffer holds the 

result values of completed instructions instead of rename registers. Moreover the 

instruction window can be combined with the reorder buffer to a single buffer unit 

(UMD, 2000).  

The future file is a mechanism described by Smith and Pleszkun. There is 

another modified version of it, which is described by Johnson. It consists of a model 

similar to the simple reorder buffer with the addition of an extra register file known as 

the future file. As in the simple reorder buffer, the reorder buffer holds look-ahead state 
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and the register bank hold in-order state. In normal operation the future file holds the 

architectural state, however upon recovery from exception the architectural state is 

formed by a combination of the future file and the register bank (David, 1997).  

 

3.6 History Buffer Scheme 

The history buffer is one of three mechanisms proposed by Smith and Pleszkun 

to handle precise interrupts in pipelined processors. Like check pointing mechanisms, 

the history buffer maintains some state to be restored when an exception is encountered. 

However, unlike check pointing only the part of the state, which has changed recently, 

is stored.  
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3.7 Summary 

 The main five handling schemes for the precise interrupts in pipelining systems 

were introduced in this chapter. The first method is the In-Order-Completion of 

instructions. The second method is the Reorder Buffer, the same structure of this 

Reorder Buffer but with the forwarding (Bypassing) paths is the third method. The 

fourth and fifth methods are the Future File and the History Buffer respectively. 

Finally, Implementing precise interrupts through in-order completion degrades 

performance by reducing the amount of pipelining possible. Implementing precise 

interrupts with out-of-order completion requires significant amount of hardware. Worse, 

the extra hardware can add to the machine’s cycle time, thus degrading performance. To 

reduce the costs of interrupt handling with out-of-order completion, we must consider 

the requirement of the different classes of interrupts (Mayan, 1996). 
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4. IMPLEMENTATION OF IN ORDER COMPLETION 

 

 

In this chapter, we introduce the architecture and the structure of the system, 

which we use. The algorithm of the In-Order Completion scheme is implemented and 

analyzed in this chapter. 

4.1 Architectural Model 

For describing the various techniques, an architectural model is chosen as 

declared in (James et al., 1988). It is a register-register architecture where all memory 

accesses are through registers and all functional operations involve registers. In this 

respect, it bears some similarity to the CDC and Cray architectures. The process state in 

this architectural model consists of the program counter, the general-purpose registers, 

and main memory. The architecture is simple, has a minimal amount of process state, 

can be easily pipelined, and can be implemented straightforward with parallel functional 

units like the CDC and Cray architectures (James et al., 1988). 

In our model as illustrated, we emphasize scalar architectures (as opposed to 

vector architectures) because of their applicability to a wider range of machines (James 

et al., 1988).  

Figure 4.1 shows the parallel pipelined implementation for this simple 

architecture. It uses an instruction fetch/decode pipeline with processing of instructions 

in order. The final stage of the fetch/decode pipeline is an issue register where all 

register interlock conditions are checked. Here the memory access function is 

implemented as one of the functional units. The registers of the operands are read at the 

time an instruction is issued. There is a single result bus that returns results to the 
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register file. This bus may be reserved at the time an instruction is issued or when an 

instruction is approaching completion. A new instruction can be issued every clock 

period in the absence of register or result bus conflicts. 

 

 

 

 

 

 

 

 

Figure 4.1. Pipelined Implementation of our architectural model (James et al., 1988). 

Table 4.1. Sample1 of code used in the work. 

State.  No. Statement Comments Execution time 

0 R1� 0 Init. Loop index 2 clock periods 

1 R0 � 0 Init. Loop Counter 2 clock periods 

2 R5 � 1 Loop Inc. Value 2 clock periods 

3 R7 � 100 Maximum Loop Count 2 clock periods 

4 Loop: R1� (R2 +A) Load A(I) 11 clock periods 

5            R3 � (R2 +B) Load B(I) 11 clock periods 

6            R4 � R1 + fR3 Floating Add 6 clock periods 

7            R0 � R0 +R5 Inc. Loop count 2 clock periods 

8            (R0 + C) � R4 Store C (I) 11 clock periods 

9            R2 � R2 +R5 Inc. Loop index 2 clock periods 

10 P = Loop: R0 !=R7 Cond. Branch not equal  
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Table 4.2. Sample2 of code used in the work. 

State.  No. Statement Execution time 

A LD F6, 34(R2) 1 clock period 

B LD F2, 45(R3) 1 clock period 

C MULTD F0, F2, F4 10 clock periods 

D SUBD F8, F6, F2 1 clock period 

E DIVD F10, F0, F6 40 clock periods 

F ADDD F6, F8, F2 1 clock period 

To demonstrate how an imprecise process state may occur in our architectural 

model, consider the section of code mentioned in table 4.1, which sums the elements of 

array A and B into array C. Another sample of code used in the work is introduced in 

table 4.2. 

4.2 Interrupts prior to Instruction Issue  

Before preceding with the various precise interrupts methods, I would like to 

first consider interrupts that can be handled the same way by all methods, these are 

interrupt that may occur prior to instruction issue. 

As the architectural model indicates, instructions are queued to be issued in 

sequence. This simplifies the handling of interrupts since there is no change can be 

applied to the process state before instructions have been issued.  

There are many such interrupts, such as, privileged instruction faults and 

unimplemented instructions; others may include external interrupts. These exceptions 

can be checked at the issue stage. 

When such an exception occurs, this can be handled as follows: 

1. Instruction issue is halted. 
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2. A wait state is forced until all previously issued instructions have been 

completed. 

3. After they have completed, the process is in a precise state (which includes the 

precise contents of the registers, the program counter, conditional registers, 

index registers, and that portion of the main memory being used for data).  

4. The precise instruction is the one whose program counter value being held in the 

issue register. This makes the memory and the program counter in a consistent 

state. 

There are several mechanisms for implementing precise interrupts on pipelining 

implementations. As we have indicated, the main source of difficulty is the order of the 

completion, not the order of issue. For simplicity, unless otherwise stated, we assume 

that instructions are issued in order- that is, in their program order (Mayan, 1996). So, 

our concentration will be on exceptions occurring after the instructions are issued. 

4.3 In-Order Instruction Completion  

4.3.1 Scheme Description  

With this scheme, as described in section 3.2, instructions modify the process 

state only when all previously issued instructions are known to be free of exceptions as 

illustrated in the previous section.  

There is logic on the result bus that checks for exception conditions in 

instructions, as they complete. This control information identifies the functional unit 

that will supply the result and the destination register of the result. It is also marked 

“valid” with a validity bit. Each clock period, the control information is shifted down 

one stage toward stage one. When it reaches stage one, it is used during the next clock 
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period to control the result bus so that the functional unit result is placed in the correct 

result register. 

The Result Shift Register is shown in Table 4.3. Here the stages are labeled 1 

through n, where n is the length of the longest functional unit pipeline. An instruction 

that takes i clock period reserves stage i of the result shift register at the time it is issued. 

If the stage already contains valid control information, then the issue is held until the 

next clock period, and stage i is checked once again. An issuing instruction places 

control information in the result shift register. 

Table 4.3.  Result Shift Register  

Stage 
Functional 

Unit Source 

Destination 

Register 

Valid 

1   0 

2   0 

3   0 

4   0 

5   0 

. . . . 

. . . . 

N   0 

4.3.2 Scheme Analysis 

The method basically can be used regardless of whether precise interrupts are to 

be implemented or not.  If we still disregard the precise interrupts. It is possible for a 

short instruction to be placed in the resultant pipeline in stage i, when previously issued 

instructions are in stage j, j>i. This leads to instruction finishing out of the original 

program sequence. If the instruction at stage j eventually encounters an exception 

condition, the interrupt will be imprecise because the instruction placed in stage i will 

complete and modify the process state even though the sequential architectural model 

says i does not begin until j completes. 
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To implement precise interrupt with respect to registers using this methodology; 

an issuing instruction using stage j should “reserve” stages i<=j that were not 

previously reserved by other instructions. And they are loaded with null control 

information, so that they do not affect the process state. This guarantees that instruction-

modifying registers finish in order. 

Table 4.4. Result Shift Register including the program counter to implement 

precise interrupts. 

       (a) Sample 1 (James et al., 1988). 

Stage 
Functional 

Unit Source 

Destination 

Register 
Valid 

Program 

Counter 
1   0  

2   0  

3   0  

  4   0  

5 FLPT ADD 4 1 6 

. . . . . 

. . . . . 

N   0  

 
     (b) Sample 2  

Stage FU/OP 
Destination 

Register 
Valid 

Program 

Counter 

1     

2 LD (1)  0 A 

3     

4     

5     

6     

7     

8     

9     

10     

11     

12     

13     

14     

To implement precise interrupts with respect to the program counter, the result 

shift register is widened to include a field for the program counter of each instruction as 

shown in table 4.4.-a. This field is filled as the instruction is issued. When an instruction 
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with an exception condition appears at the result bus, its program counter is available 

and becomes part of the saved state. 

Experiments: 

Many experiments were done to test the scheme in order to handle the precise 

interrupts. The original functional units (FUs) used, were: Integer FU (ADDD, SUBD), 

the Floating Point FU, the Load/Store FU, the MultD/DivD FU, and the Branch FU. 

When we changed these FUs, we used more FUs to increase the throughput. The Integer 

FU is extended to  be two FUs, one for ADDD and the other to SUBD, the same then is 

done to the MultD/DivD FU, it becomes MultD FU and DivD FU, the Load/Store FU 

becomes one for Load and the other for Store, the Floating Point FU can be further 

divided to have one for each floating point operations. The dependency hazards were 

resolved fully or partially. Here are the results of the experiments done: 

A- The first sample of code is applied to the approach. The results were as follows: 

o The total number of shifts and tests were the same for all experiments. Fig.4.4 

shows the percentage of failed to succeeded tests.  

o Fig. 4.2, 4.3 show how is the number of shifts and failed tests are changed in 

each experiment. 

Resolving the dependencies among instructions, but still having sharp 

peaks at the instructions that has RAW dependency achieves a slight 

improvement. 

B- The second sample of code is applied. The results were as follows: 
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o The total number of shifts and tests were not changed in any of the experiments 

done. Fig.4.6 shows the total number of tests and the percentage of failed to 

succeeded tests.  

o Fig. 4.5, 4.7 show how is the number of shifts and failed tests are changed after 

each modification.  

As we resolve dependencies among instructions, we get better 

performance regarding to the number of failed tests for each Instructions, i.e., 

tests are succeeded more.  

So, when there is no hazard dependency, this will give better performance to the 

algorithm used. No need to change the FUs, since all instructions are issued and 

executed in order, and no conjunction of instructions can occur at the FU. 

The main advantages of the In Order Completion are that it is simple and easy to 

be implemented. Also, it is free of any kind of dependency. The nature of instructions 

and dependencies among them affect the results obtained. 
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(a) original Code. 

 

(b) Exchanging Instructions 6,7. 
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(c) Reordering instructions to resolve all Dependency hazards. 

 
 

(d) Loop of the original code. 
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(e) Loop after resolving dependencies. 

Figure 4.2. In-Order Completion. Sample 1, the number of shifts per each instruction. 

 
 

(a) Original Code. 
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(b) Exchanging Instructions 6,7 
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(c) Reordering instructions to resolve all Dependency hazards. 

 
 

(d) Loop of the original code. 

 
 

(e) Loop after resolving dependencies. 

 

Figure 4.3. In-Order Completion. Sample 1, the number of failed tests per each 

instruction 
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Sample1:Method1 

Original Instuctions

40%

No. of 

Succ. 

Tests

60%

No. of 

Faild 

Tests

1

2

 

Sample1:Method1  

(Loop)

33%

No. of 

Succ. 

tests

67%

No. of 

Faild 

Tests

1

2

 
(a) Original Instruction Code (b) Original Instruction Code (Looping) 

Figure 4.4. In-Order Completion. Sample 1. The number of failed tests and Succeed 

tests to the Total number of tests. 
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(b) Changing FUs. 

 
 

(c) Reordering instructions to resolve all Dependency hazards. 
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(d) Reordering instructions to resolve Dependency and Change 

FUs. 

Figure 4.5. In-Order Completion. Sample 2. The number of shifts per each instruction. 

Sample2:Method1

33%

Succ. 

Tests
67%

Faild 

Tests
1

2

Figure 4.6. In-Order Completion. Sample2. The number of failed tests and Succeed tests 

to the Total number of tests. 
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(a) Original Code. 

 
 

(b) Changing FUs. 

N
o
 o

f 
  

F
. 

T
es

ts
 f

o
r 

 e
ac

h
  

In
st

r.
 

Instruction Number 

N
o
 o

f 
  
F

. 
T

es
ts

 f
o
r 

  
ea

ch
  
In

st
r.
 

Instruction Number 



www.manaraa.com

 

 

 

71 

 

 
 

(c) Reordering instructions to resolve all Dependency hazards. 

 
 

(d) Reordering Instructions to resolve dependency and Change FUs. 

Figure 4.7. In-Order Completion. Sample 2, the number of Failed Tests per each 

instruction. 
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The scheme has the following disadvantages: 

1. Fast instructions may sometimes get held up at the issue register even though 

they have no dependencies and would otherwise issue. 

2. Long program execution time because of the held of instructions at the issue 

stage. 
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4.4 Summary 

The architectural model, and the pipelined performance analysis were discussed 

in this chapter. Two interrupt schemes were studied which are: the interrupts prior to 

instruction issue, and the In Order Completion, which is implemented and analyzed. 

The first scheme acts upon exceptional conditions as soon as they are detected, thereby 

saving a few cycles per interrupt, but it must also handle situations where an older 

instruction causes an interrupt after a newer instruction causes its own. In this case, the 

pipeline would be in the process of handling the newer instruction’s exception when the 

older instruction’s exception is detected. The pipeline must abort the interrupt-handler-

in-progress and redirect control to handle the exception that was detected next but 

should be handled first (in program order). Thus, the first scheme requires a bit more 

logic.  

 



www.manaraa.com

Register 

bank  

Operands Functional 

Unit 

Reorder 

Buffer 

Results  

Results 

5. Implementation of Out of Order Completion 

 

 

In this chapter, we introduce the Out- Of -Order schemes; the algorithms and the 

results are implemented and then fully analyzed. 

5.1 Reorder Buffer (Basic Reorder Buffer) 

5.1.1 Scheme Description 

The reorder buffer is a mechanism suggested by Smith and Pleszkun. The 

structure of a system with a reorder buffer is shown in figure 5.1. The reorder buffer is a 

queue holding values returned from the functional units (David, 1997). 

 

 

 

 

Figure 5.1.  Processor organization with a reorder buffer. 

The reorder buffer is implemented as a circular FIFO buffer. During instruction 

issue, a space is reserved in the reorder buffer into which the current program counter is 

written together with the destination register identifier. Results returning from the 

functional units write their results into the allocated spaces in the reorder buffer rather 

than writing the results directly into the register bank (David, 1997).  
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Furthermore, each reorder buffer entry has a valid bit. The bit indicates that the 

result of the instruction is in the reorder buffer entry. A reorder buffer entry with active 

valid bit is called valid reorder buffer entry.  

The reorder buffer is accessed using two pointers, the head and tail pointers. We 

denote the value of the head pointer during cycle T by ROBhead T, and the value of the 

tail pointer by ROBtail T. Instructions are put in the ROB entry ROBtail points to, and 

removed from the entry ROBhead points to. After an instruction is put in the ROB, the 

ROBtail pointer is increased. After an instruction is removed from the ROB, the 

ROBhead pointer is increased. The pointers wrap-around if they reach the end of the 

ROB. This is illustrated in figure 5.2. 

0  

1  

2 I1 

3 I2 

4 I3 

5 I4 

6  

7  
Figure 5.2. Illustration of the reorder buffer pointers 

 

Table 5.1. RSR File used in ROB Scheme 

 

      (a) RSR File – sample 1 

 

Stage 
Functional Unit 

Source 
Valid TAG 

1  0  

2 Integer ADD 1 5 

3  0  

4  0  

5 FLPT ADD 1 4 

. . . . 

N  0  

 

 

 

 

ROBhead 

ROBtail 
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       (b) RSR File– sample 2 

 

Stage FU/OP 
ROB 

TAG 
Valid 

Program 

Counter 

1     

2 LD (1) 2  A 

3 LD (2) 3  B 

4     

5 SUBD 5  D 

6     

7     

8     

9 ADDD 7  F 

10     

11     

12     

13 MULTD 4  C 

14     

 

The Result Shift Register (RSR) is shown in Table 5.1. The Reorder Buffer (ROB) is 

shown in figure Table 5.2. 

Table 5.2. ROB File used in ROB scheme. 

(a) ROB, sample 1 

Entry 

Number 

Des. 

Register 
Result Exceptions Valid PC 

3      

4 4   0 6 

5 0   0 7 

: : : : : : 

: : : : : : 

: : : : : : 

      

        

       (b) ROB, sample 2 

Entry 

Number 

Des. 

Register 
Result Exceptions Valid PC 

3      

4 F8  NO √ A 

5 F2  NO √ B 

6 F0    C 

7 F8   √ D 

8 F10    E 

9 F6   √ F 

10      
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5.1.2 ROB Scheme Analysis 

To Implement the ROB, follow these steps  

- Initialization: 

1. Initialize both ROB and RSR 

2. Both tail and head reserved at the first entry of ROB. 

- Instruction Issue: 

1. The next available ROB (Entry) is pointed by tail. 

2. ROB Entry is reserved to the issuing instruction. 

3. RSR (TAG) = ROB (Entry), is placed in RSR along with the control 

information of the instructions. 

4. Tail pointer is incremented. 

- Instruction Completion: 

4. Write value into ROB entry specified by the RSR 

5. DO NOT write result into the register file 

6. If instruction caused an exception, mark exception bit in the ROB for offending 

instruction. 

7. Check instruction at the head of the ROB 

� If the associated instruction is not completed, the slot remains there until it has 

completed. 

� Instructions can continue to be decoded until the reorder buffer is full. 

� If completed, check exception bit 

� If there is no fault: 
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a. Commit state (the value is written to the register file). 

b. The entry removed from the reorder buffer. 

c. Advance head pointer. 

8. If there is a fault associated with the value: 

1. Issue is stopped in preparation for the interrupt. 

2. Squash subsequent instructions in ROB. 

3. All further writes into the register file are inhibited. 

4. Back-up the tail pointer to the head pointer. 

5. The in-order state of the register file is restored. 

9. If the instruction causes an exception and software support is needed, the 

hardware handles the interrupt in the following way: 

1. The ROB is flushed; the exceptional PC is saved; the PC is redirected to the 

appropriate handler. 

2. Handler code is executed, typically with privileges enabled. 

3. Once a return from interrupt instruction is executed: 

a. The exceptional PC is restored 

b. The program resumes execution 

In this model, there are two primary sources of performance loss: While the 

exception is being handled, there is no user code in the pipe, and thus no user code 

executes—the application stalls for the duration of the handler:  After the handler 

returns control to the application, all of the flushed instructions are re-fetched and re-

executed, duplicating work that has already been done (Amer et al., 2000). 
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Instructions are en-queued in program order and only when their operands are 

available. While they are in the reorder buffer program order does not state the 

sequencing of any particular events. In particular, the instructions might finish 

executing out of program order. 

When an instruction is successfully de-queued from the reorder buffer, its results 

are committed to the machine state. At this point, the instruction is said to be retired. 

While an instruction is in the process of execution, i.e. before retiring, it may cause an 

exceptional condition. To ensure that such exceptions are not handled speculatively or 

out-of-order, exception handling does not occur until instruction commits time. This 

ensures that no previous instructions have caused as-yet un-handled exceptions. 

Therefore, all exceptions are handled in program order, and no exception is handled for 

an instruction that ends up and being discarded (UMD, 2000). 

Experiments and Results: 

Many experiments were done to test the algorithm. Two samples of code were 

tested. The instructions in the two samples were repeated several times. Random 

instructions with different execution times and with variable number of functional units 

were tested. The same variability of FUs used in the previous chapter (In-Order 

Completion), were used here. The dependency hazards were resolved fully and 

partially, to test the results for each variation. Here are the results of the experiments 

done: 

1. The first and the second sample of code, and all their variations were applied to 

the algorithm. The results were as follows: 
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� The instructions that have hazard dependencies have sharp peaks in the 

diagrams graphed for the number of failed tests for each instruction as shown 

in Fig. 5.3 and 5.4. Other instructions have a constant number for the failed 

tests.  

� The total number of the failed tests and succeeded tests are nearly the same in 

all experiments. The percentage in all cases is shown in figure Fig.5.5, Fig. 

5.6. 

2. The RAW dependencies are solved and this increases the number of shifts 

necessary for each instruction to be shifted in order to be completely executed, 

this is shown in Figure 5.5, 5.6 as a peak for resolved instructions.  
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(b) Changing FUs. 

 
 

(c) Resolve Dependency hazards (partially) 
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(d) Resolve Dependency hazards (Completely) 

 
 

(e) Resolving Dependencies & FUs. 

 
Figure 5.3. ROB. Sample 1: the number of Failed Tests per each instruction. 
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(a) Original Code. 

 
 

(b) Changing FUs. 
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(c) Resolve Dependency hazards. 

 
 

(d) Resolving Dependencies and FUs. 

Figure 5.4. ROB. Sample 2: the number of Failed Tests per each instruction. 
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ROB= Sample1

 (Original)

Failed 

Tests

67%

Succ. 

Tests

29%

 

ROB:Sample1 

(Dependencies Resolved)

Failed 

Tests

66%

Succeede

d Tests

34%

 
(a) Original Instruction Code (b) (Resolving Dependency) 

ROB: Sample1

(Original + FUs)

Failed 

Tests

67%

Succeede

d Tests

33%

 

ROB:Sample1

 (Dep.Resolved +FUs)

Failed 

Tests

66%

Succeede

d Tests

34%

 
(c) Original Instructions (changing FUs.) (d) Changing FUs and Resolved Dep. 

Figure 5.5. ROB. Sample 1. The number of failed tests and Succeed tests to the Total 

number of tests. 
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(Original)

Failed 
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50%

Succeede
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50%

 

ROB:Sample2 (Dependencies 

Resolved)

Failed 

Tests

50%

Succeede
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50%

 
(a) Original Instruction Code (b) (Resolving Dependency) 

ROB:Sample2 

(Originl+FUs)

Failed 

Tests

54%

Succeede

d Tests

46%

 

ROB:Sample2 

(Reseloved DEpendencies+FUs)

Failed 

Tests

54%

Succeede

d Tests

46%

 
(c) Original Instructions (changing FUs.) (d) Changing FUs & Resolving 

Dependencies 

Figure 5.6. ROB. Sample 2. The number of failed tests and Succeed tests to the Total 

number of tests. 
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3. As the size of the ROB is changed, different results can be achieved.  The total 

number of tests, the number of failed tests, and the number of shifts at each 

instruction all increased as the size of the ROB is decreased until we reach to a 

stable and uniform results regardless of any further expansion.  We started with 

the size of 1 to the size, which is of the RSR. The results can be shown in fig. 

5.7. We know the size of both RSR and ROB depends on many factors 

regarding to the complexity, logic control circuits, and the hardware components 

in the processor. If the reorder buffer is too small the issue stage will stall 

waiting for a space, leading to performance loss. But, if we increase it supposing 

better performance by not having instructions stopped from issuing because of 

not having empty entries in the ROB, this seems not to have better performance. 

 
 

(a) The Total number of tests as the size of ROB changes: 
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(b) The number of failed tests as the size of ROB changes: Sample 1 

 
 

(c) The number of shifts as the size of ROB changes: Sample 1 
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(d) The Total number of tests as the size of ROB changes: Sample 2  

 
 

(e) The number of failed tests as the size of ROB changes: Sample 2 
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(f) The number of shifts as the size of ROB changes: Sample 1 

Figure 5.7. ROB. After increasing the size of the ROB. 

4. As the time to detect an exception increases, so does the number of instructions 

that will be re-fetched and re-executed. Clearly, the overhead of taking an 

interrupt in a modern processor core scales with the following, where each of 

these is on a growing trend: 

� The size of the reorder buffer. 

� Pipeline depth. 

� Issue-width (Amer et al., 2000). 

5. As operands are read from the register file the performance degradation due to 

RAW dependencies is increased since it is necessary to wait for the in-order 

state to be resolved as results drain into the register bank (David, 1997). 

6. We can decrease the time that instructions waited for committing the results by 

taking the most recent entry for a register from either the register file or the 
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reorder buffer. So, when using the Reorder Buffer, we may have two variations: 

either to have: 

• Operands must be obtained though the register file. Or  

• Operands can be read directly out of the reorder buffer itself if the latest copy of 

a register value is present in the result portion of a reorder buffer entry holding 

an instruction that has finished executing but has not yet written its result to the 

register file.  

Now we can conclude the following points to be the Reorder Buffer main 

disadvantages: 

A. It suffers a performance penalty. 

B.  The computed result that is generated out of order is held in the reorder buffer 

until previous instructions, finishing later, have updated the register file. 

C. An instruction dependent on a result being held in the reorder buffer cannot be 

issued until the result has been written into the register file. 

D. The effect on RAW dependencies. 

So, the key features of the reorder buffer can be summarized as follows: 

• Instructions complete out of order (overlap execution of instructions in buffer). 

• Commit in order. 

• Consider interrupts at any instruction at commit point, if committing instruction 

interrupts, squash all later instructions. 

Finally, as the electronic fabrication of the components affect the speed and the 

bandwidth of the processing; at UC Irvine, researchers have been designing a 



www.manaraa.com

 

 

 

90 

 

superscalar architecture called SDSP (Superscalar Digital Signal Processors). One of the 

main components of the design is the scheduling unit, which consists of an instruction 

window, a reorder buffer, and a register file. It outperforms the previously published 

reorder buffer in several features. First, the new design decodes four instructions instead 

of eight. Secondly, the current design runs at 100 MHz as opposed to 20 MHz, using a 

smaller, three metal technologies. Thirdly, instead of a current bit cell, a look up array is 

used to dynamically determine the most current entry. This has performance benefits in 

handling mispredicted branches, since selected entries may be invalidated. Finally, the 

size of all cells was reduced dramatically by reducing the number of transistors per cell 

and by combining the shift and storage portions of each cell. But, we should note that 

the associative lookup could be expensive, especially when we must access the most 

recent entry for a particular register. 

5.2 Reorder Buffer with Bypassing 

5.2.1 Scheme Description 

One of the primary disadvantages of the reorder buffer described above is its 

effect on RAW dependencies. This effect can be reduced (or removed) by adding 

forwarding paths from the reorder buffer around the register bank as shown in figure 5.8 

(David, 1997). 

When an instruction is being issued, the reorder buffer is searched for entries 

whose destination register field corresponds to a source operand that the instruction 

needs. If no entry in the reorder buffer matches the register number then the result has 

already reached the register file and the operand is read from there.  
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(a) 

 

 

 

 

 

(b) 

Figure 5.8.  Processor organization with a reorder buffer with forwarding 

In order for results to be used early, bypass paths may be provided from the 

entries in the reorder buffer to the register file output latches as shown in figure 5.9. 

These paths allow data being held in the reorder buffer to be used in place of register 

data. If one match is found the instruction issue may be stalled until the reorder buffer 

entry contains a valid result, whereupon it is used as the operand for the instruction 

being issued (David, 1997). 

 

  

 

 

 

Figure 5.9. Reorder Buffer method with Bypasses. 
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The implementation of this method requires comparator for each reorder stage 

and operand designator. If an operand register designator of an instruction being 

checked for issue matches a register designator in the reorder buffer, then a multiplexer 

is set to gate the data from the reorder buffer to the register output latch. 

5.2.2 Scheme Analysis 

The same ROB algorithm is applied with some modification, which is added to 

improve the pit faults of the basic method. 

To Implement the ROB with Forwarding, we can follow these steps 

• If instruction is completed, then the value is in ROB 

• If instruction is not retired, then the value not in register file 

• Dependent instruction is dispatched into window, in which the value is either: 

a. Not read from register file. 

b. Can’t be grabbed from result bus, i.e., Instruction is already completed! 

c. Only is placed is in ROB,  

• Need to read value from ROB (ROB bypass) (David, 1997). 

When bypass paths are added, preciseness with respect to the memory and the 

program counter is not changed from the basic method. So, the greatest disadvantages 

with this method are: 

o There are number of bypass comparators needed in this scheme. 

o The amount of circuitry required for the multiple bypass check, while this 

circuitry is conceptually simple, there is a great deal of it (James et al., 1988). 
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As we stated above, the primary disadvantage of this mechanism is the complexity 

of the logic required to test for the presence of registers in the reorder buffer. This 

consists of a Content Addressable Memory (CAM) whose size increases with the 

number of entries in the buffer and the number of operands that are forwarded. The 

comparison is complicated by the need to select the latest version of a register if 

multiple matches are found.  

The main advantage of the reorder buffer with forwarding is that in addition to 

providing a mechanism for exception handling it also resolves RAW and WAW 

dependencies (David, 1997). When using ROB with bypassing, if there is a large set of 

physical registers, ROB allows detection of when to free a physical register. Its handling 

of WAW dependencies can be seen to be a form of register renaming. Effectively each 

entry in the buffer is another register, and multiple versions of each register may be 

presented in the buffer at any time.  

The buffer reorders values so that where there are WAW dependencies the values 

are written back to the register bank in the correct order, and the search mechanism 

ensures that instructions which are issued read the most recently allocated version of 

registers rather than the most recently completed version. 

5.3 The History Buffer (HB) 

5.3.1 Scheme Description: 

The history buffer maintains some state to be restored when an exception is 

encountered, only the part of the state, which has changed recently, is stored.  



www.manaraa.com

 

 

 

94 

 

A history buffer is a FIFO, to which every instruction is added when it is 

fetched. When the instruction writes to the register file, the value it overwrites is saved 

in with it. Instructions are removed from the top of the history buffer when they are 

completed. Any exception caused by an instruction is reported only when it comes to 

the top of the stack. At that point, the register file values are restored by "'roll back" 

basically, starting from the bottom of the buffer, all the saved register values are written 

back to the register file. The destination register number and program counter are stored 

in the slot and the exception and valid flags in the slot are cleared (David, 1997). 

 

  

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

(b) 

Figure 5.10. The basic structure of a system with a history buffer 
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Figure 5.10 shows the basic structure of a system with a history buffer while 

figure 5.11 shows entries to keep original values that can be restored after an exception 

(David, 1997). 

 

 

 

 

 

Figure 5.11. Entries to keep original values after an exception 

The straightforward adaptation of a history buffer is that it will save with each 

instruction the old physical register mapped by its output register. On an interrupt, both 

the map and the register file are restored to their precise state by rolling back the history 

buffer. Results go into register file out-of-order, but keep old state in a history buffer 

until all previous operations are done. So, it requires hardware to “roll back” history 

buffer on exception. 

                Table 5.3.  RSR, HB used in the History Buffer Scheme. 

     (a) The RSR File 

Stage 
Functional 

Unit Source 

Destination 

register 
Valid TAG 

1   0  

2 Integer ADD 0 1 5 

3   0  

4   0  

5 FLPT ADD 4 1 4 

. .  . . 

. .  . . 

N   0  

Used only 

 

On Exception 
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File 
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Control  
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register 
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                     (b) HB File  

Entry 

Number 

Des. 

Register 

Old 

Value 
Exceptions Valid PC 

3      

4 4 40800000 0 0 6 

5 0 42 0 0 7 

: : : : : : 

: : : : : : 

: : : : : : 

      

There is an in-order map, which satisfies the invariant that it is the same as the 

current map used by the instruction at the top of the history buffer. The RSR and HB are 

shown in Table 5.3. 

So, the history buffer has an entry for every instruction. The information 

contained in this entry includes the instruction, the physical register displaced from the 

current map by the instruction when it was issued, and a bit indicating whether the 

instruction has been completed or not. 

5.3.2 Scheme Analysis 

To Implement the HB scheme, we can follow these steps  

- On issue  

1. The instruction is added to bottom of the history buffer. 

2. The physical register to which the instruction's output register is remapped is 

also added (assuming, of course, that the instruction has an output register). 

3. Copy current value of destination register to HB. 

4. Increment head. 

 

Head 

Tail  
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- On Completion: 

1. Mark HB entry valid. 

2. Put old value into history buffer 

3. Mark exception bits. 

4. When head to HB contains an entry marked valid, the entry checked for 

exception:  

� When an entry has exception:  

1. Stall issue, waits for pipeline to empty (Flush pipeline). 

2. Reload register file from the values in the history buffer (from tail to head). 

3. PC at head is precise PC. 

� If head of ROB has no exception, remove it from buffer. 

Interrupt recovery can be facilitated by maintaining an in-order map, i.e., the 

map used by the instruction at the top of the history. This can be implemented by 

saving, for each instruction in the history buffer, the physical register, for which the 

instruction's output register was mapped to before being remapped by the instruction. 

When an instruction is retired from the top of the history buffer, the in-order map is 

updated appropriately. If exceptions are reported only when the excepting instruction 

reaches the top of the history buffer, the map can be restored in a single cycle by 

copying the in-order map instead of rolling back the history buffer. 

Experiments: 
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The same experiments were done as in the previous experiments to test the HB 

algorithm.  The same two samples of code were tested with all their variations. The 

results were as follows: 

1. Both samples are applied to the HB algorithm. The same variations as the previous 

schemes were used. 

• Sharp peaks at the instructions, which have hazard dependencies, obtained as 

shown clearly in Fig. 5.12 and 5.13. Other instructions have a constant number 

for the failed tests for the two samples.  

• Better results are achieved for the number of failed tests to the succeeded tests 

as we change the FUs and having no dependency. This is shown in Fig. 5.14, 

Fig. 5.15. 

2. The RAW dependencies are completely solved using both the old values of the 

destination registers and the updated values. This clearly increases the number of shifts 

necessary for each instruction in order to complete execution. The same considerations 

mentioned in the previous sections, and in section 4.6 are used here.   The history buffer 

does not help in the resolving of dependencies and it imposes a dependency itself. It 

may be necessary to wait for the old value of the destination register at issue before it is 

written into the history buffer. Thus an additional dependency resolving mechanism is 

needed (David, 1997). 

3. We do some experiments for increasing/decreasing the size of the HB, Figure 5.16 

shows the results obtained. Increasing the size of HB makes the total number of tests 

and shifts to be uniform at a certain point. When the size of the HB is the smallest, it 

gives the less performance. This is because if the history buffer does not contain enough 

entries, the decode and issue stages will be stalled waiting for a free space in the buffer 
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before issuing the instruction. But increasing it seems not to have better performance. 

So, the history buffer can cause a performance degradation beyond that caused by the 

added complexity of the control logic.  

4. In a system using a history buffer the register bank holds the architectural state, as can 

be seen by the fact that the functional units access values directly from the register bank. 

The history buffer is used to restore the in-order state when an exception occurs. 

 So, the history buffer has the following advantages: 

• Only a small part of the state needs to be restored, reducing the amount of 

storage needed. 

• The cost of periodically copying the whole state is removed (David, 1997). 
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(b) Changing FUs. 

 
 

(c) Resolve Dependency hazards (partially) 
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(d) Resolve Dependency hazards (Completely) 

 
 

(e) Resolving Dependencies and FUs. 

Figure 5.12. HB. Sample 1: the number of Failed Tests per each instruction. 

N
o
 o

f 
 F

. 
T

es
ts

  
fo

r 
 e

ac
h
  

In
st

r.
 

Instruction Number 

N
o
 o

f 
 F

. 
T

es
ts

  
fo

r 
 e

ac
h
  
In

st
r.
 

Instruction Number 



www.manaraa.com

 

 

 

102 

 

 
 

(a) Original Code. 

 
 

(b) Changing FUs. 
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(c) Resolve Dependency hazards. 

 
 

(d) Resolving Dependencies and FUs. 

Figure 5.13. HB. Sample 2: the number of Failed Tests per each instruction. 
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HB: Sample1 

(Original Code)

&

Dependencies resolved Completely

Succ. 

Tests

29%

Faild 

Tests

71%

 

HB:Sample1

 (Origenal+FUs)

Succ. 

Tests

30%
Faild 

Tests

70%

 
(a) Original Code & Resolving Dependency (b) Original Instructions (changing FUs.) 

 

HB:sample1

 (Resolve Depend. +FUs)

Succ. 

Tests

32% Faild 

Tests

68%

 
(c) Resolved dependencies (partially) (d) Changing FUs & Resolving 

Dependencies 

Figure 5.14. HB. Sample 1. The number of failed tests and Succeed tests to the Total 

number of tests. 
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(a) Original Instruction Code (b) (Resolving Dependency) 
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(c) Changing FUs and Resolving 

Dependencies 

 

 

Figure 5.15. HB. Sample 2. The number of failed tests and Succeed tests to the Total 

number of tests. 
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(a) The Total number of tests as the size of ROB changes: Sample 1  

 
 

(b) The number of failed tests as the size of ROB changes: Sample 1 
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(c) The Total number of tests as the size of ROB changes: Sample 2  

 
 

(d) The number of failed tests as the size of ROB changes: Sample 2 
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HB:Sample1

 (After increasing size of HB)
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Tests
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Faild 

Tests
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HB:Sample2 

(After increasing size of HB)
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Tests

46%

Faild 

Tests
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(e) Sample 1: Percentage (f) Sample 2: Percentage 

Figure 5.16. After increasing the size of the ROB. 

The main disadvantage is that there only one result bus, so it takes one cycle per 

entry to restore from the history buffer. In addition to the storage and control logic for 

the history buffer itself; it requires an extra read port on the register bank to supply the 

old values of the destination register to get a case in which there is a need for having 3 

read ports.  

5.4 The Future File (FF) 

5.4.1 Scheme Description: 

The organization of a system using the future file is shown in figure 5.19. It 

consists of a model similar to the simple reorder buffer with the addition of an extra 

register file known as the future file “FF”. As in the simple reorder buffer system, the 

reorder buffer holds look-ahead state and the register bank holds in-order state. In 

normal operation the future file holds the architectural state, however upon recovery 

from exception the architectural state is formed by a combination of the future file and 

the Architectural File “AF” (David, 1997). 
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In this scheme, there are two register files: the Architectural File, which has in-

order results, and the Future File, which has out-of-order results for use as operands and 

use Reorder Buffer to keep Architectural File in-order. 

As each instruction is issued the location in the future file corresponding to its 

destination register is marked to indicate that it is valid, and a tag is stored 

corresponding to the instruction which is to write the result (David, 1997). 

 

 

 

 

(a) 

 

 

 

 

 

 

(b) 
Figure 5.17. Processor organization with a future file 
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As results arrive from the functional units they enter the reorder buffer and the 

future file. If the instruction returning the result does not match the future file’s tag, the 

result is discarded; this allows WAW dependencies to be resolved by discarding older 

versions of the register irrespective of the order that they return from the functional 

units. If the tag matches the result overwrites it (David, 1997). 

When an instruction is being issued and needs to read its operands, it reads the 

same location in the register file and the future file. If the future file location is marked 

as invalid the operand is read from the architecture file, otherwise the tag or value is 

read from the future file. If the future file contains a tag, the instruction issue must stall 

to wait for the result to arrive. This lookup and flag check replaces the tag comparator 

lookup used in the reorder buffer (David, 1997). 

When an exception occurs the valid results in the reorder buffer before the 

exception drain into the Architecture File, completing the in-order state. The valid flags 

in the future file are then cleared. Any instruction, which is now executed, will read 

from the in-order state in the register bank (David, 1997). 

5.4.2 Scheme Analysis 

Here we are using two files, the future file (FF) and the architectural file (AF). 

The future file is (more-or-less) a normal register file. But the main differences with the 

ordinal files can be summarized as follows: 

• While the architecture register file (AF) holds in-order state and is updated in 

order, the future file (FF) is updated out-of-order. Reorder buffer controls 

updates to architecture file. 

• The future file holds the architectural state.  
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1. During decode, all operands are read from either the architecture file or the 

future file, whichever is current.  

2. The value read from the future file could be tagged if the instruction 

producing the value has not been yet completed.  

• The reorder buffer manages look-ahead state for eventual retirement to the 

architectural file.  

• While the Future file is managed like an ordinary imprecise pipeline, the 

Architecture file managed like reorder buffer scheme when head entry valid. On 

exception Architecture file contains precise state. 

There are two views of the algorithm that can be used. The original algorithm 

maintains the precise state with respect to the program counter. In this work we make 

some modification to this algorithm by keeping the same advantages with respect to the 

registers not the PC as the second view does. 

To implement the FF scheme, the following are the main steps: 

1. Once the instruction is issued, it is transferred to RSR. 

2. When instruction is completed, write from RSR to both future register and 

ROB. 

3. Decoder reads from future file (no bypassing). 

4. When non-faulting instructions reach the bottom of the reorder buffer, their 

results are written to the AF.  

5. When a faulting instruction reaches the bottom of the reorder buffer,  

a. The FF and the ROB are cleared. 

b. On interrupt, copy AF into FF. 
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The following modifications can be applied to implement the second view of the 

algorithm: 

1. After an exception is detected, the ROB is emptied from tail to 

head and RSR is also emptied.  

2. After executing all previous instructions and handling the 

exception, transfer all completed instruction from the FF to RSR 

and then to ROB. 

3. The transferred instructions are those have no exceptions and 

have no dependencies to the excepted instruction. This can be 

used to ensure that no error will occur in the register values after 

this transfer.  

4. The transferred instructions are tested as before in order to be 

committed and transferred to the AF.     

5. This improvement can be used to improve the execution time and 

to increase the speed up of the pipeline by not rolling back all 

instructions but trying to complete the pipeline from the moment 

after the exception. 

The main experiments that were done follow the second view of the FF 

algorithm. 

Experiments: 

The same experiments used in the previous mechanisms, were used here to test 

the algorithm. Some modification is applied on the original algorithm as mentioned 

above. The results of the experiments done were as follows: 
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1. The first, and the second sample of code, and all their variations were applied to 

the algorithm. The results were as follows: 

a. The instructions that have hazard dependencies have a sharp peak at the 

instructions with dependencies as shown in Fig. 5.18 and 5.19. Other 

instructions have a uniform number for the failed tests.  

b. The number of the failed tests and succeeded tests are clearly changed as 

shown in figure Fig.5.20, Fig. 5.21. Changing the FUs improve the 

performance significantly. The total execution time also is decreased 

significantly after increasing the number of the functional units.  

2. The RAW dependencies are solved; this increases the number of shifts necessary 

for each instruction in order to be completely executed. 

3. When the size of the Future file, ROB is increased, the results were as shown in 

figure 5.22. As we increase the size of the FF and ROB, the total number of 

shifts and tests were changed considerably. The change in the number of shifts 

appears more clearly.  The same discussion on the size of both ROB and FF can 

be applied as that mentioned to the ROB and HB previously. 

4. We applied the two samples of codes with their variations using the original 

flow of the algorithm, the change in the number of tests and shifts were shown in 

figure 5.23. In general, the same results obtained as in figure 5.22, except the 

number of shifts, which is changed. This can be justified by remembering that re-

executing the completed instructions after the excepted instruction needs more 

shifts. The nature of the executed instructions affects the results obtained. If the 

instructions need to be re-executed every time an exception occurs, this will 

increase the number of tests and shifts, but if the instructions are independent 
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and do not need re-execution the two forms of the flow will give the same 

results.   
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(b) Changing FUs. 

 
 

(c) Resolve Dependency hazards (partially) 

 
 

(d) Resolve Dependency hazards (Completely) 
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(e) Resolving Dependencies and FUs. 

Figure 5.18. FF. Sample 1: the number of Failed Tests per each instruction. 
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(b) Changing FUs. 

 
 

(c) Resolve Dependency hazards. 
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(d) Resolving Dependencies and FUs. 

Figure 5.19. FF. Sample 2: the number of Failed Tests per each instruction. 
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FF : Sample2

 (Dep. Resolved)
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(c) Resolved dependencies (completely) (d) Changing FUs and Resolving Dependencies 

Figure 5.20. FF. Sample 1. The number of failed tests and Succeed tests to the Total 

number of tests. 
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Figure 5.21. FF. Sample 2. The number of failed tests and Succeed tests to the Total 

number of tests. 
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(a) The Total number of tests as the size of FF changes: Sample 1  

 
 

(b) The number of failed tests as the size of FF changes: Sample 1 
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(c) The Total number of shifts as the size of FF changes: Sample 1 

 
 

(d) The Total number of tests as the size of FF changes: Sample 2  
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(e) The number of failed tests as the size of FF changes: Sample 2 

 
 

(f)The Total number of shifts as the size of FF changes: Sample 2 

 

Figure 5.22. FF. After increasing the size of the ROB, FF. 
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(a)The Total number of tests as the size of FF changes: Sample 1  

 
 

(b) The number of failed tests as the size of FF changes: Sample 1 
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(c) The Total number of shifts as the size of FF changes: Sample 1 

 
 

(d) The Total number of tests as the size of FF changes: Sample 2  
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(e) The number of failed tests as the size of FF changes: Sample 2 

 
 

(f)The Total number of shifts as the size of FF changes: Sample 2 

Figure 5.23. FF. After increasing the size of the ROB, FF using the 1
st
 view of the 

algorithm. 

5. The number of the functional units can affect the performance of the technique, 
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Finally, the main disadvantages of the Future File scheme: 

1. The cost in terms of hardware is a duplicate register bank (the future file 

itself), and the validity and tag logic. 

2. The future file cannot, by itself, solve RAW dependencies and so is 

unsuitable for out-of-order execution without the addition of extra hardware 

(David, 1997). 

The key advantages offered by the future file can be summarized as follows:  

1. Associative lookup in the reorder buffer is no longer required.  

2. State saving is easy. 

3. No extra bypassing. 
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5.5 Summary 

The out of order schemes for handling the precise interrupts were implemented 

and examined. After analyzing all schemes, we can see that the ROB technique is not 

efficient without bypass paths. These forwarding paths maintain the preciseness of the 

processors when they are interrupted and solve the RAW and WAW dependencies. 

Although HB scheme reduces the amount of storage needed, it takes one cycle per entry 

to restore from the HB since there is only one result bus. In the Future File scheme there 

are two files, so the hardware cost is increased because of the duplicated register banks. 

Also there is no extra bypassing, but it cannot by itself solve the RAW dependencies. 
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6. The Proposed Approach 

 

This chapter implements the proposed scheme, which is a compromised 

approach between the In Order completion and the Out of Order Schemes for handling 

precise interrupts in pipelining system. 

6.1 Scheme Description 

The same RSR and logic control can be used as that used in the In Order 

Completion approach. There is logic on the result bus that checks for exception 

conditions in instructions, as they complete. This control information identifies the 

functional unit that will supply the result and the destination register of the result. It is 

also marked “valid” with a validity bit. Each clock period, the control information is 

shifted down one stage toward stage one. When it reaches stage one, if its program 

counter is the current program counter to be committed, it is used during the next clock 

period to control the result bus so that the functional unit result is placed in the correct 

result register.  

In this proposed scheme, the scenario is changed. Reserving the entries in the 

RSR necessary for each instruction, which are not necessarily consecutive stages, but 

occupying the first unused entries in the RSR to keep it executing in order can 

accomplish this. The RSR contents are shown in table 6.1. 

This makes it possible for more instructions to be executed at the same time, i.e., 

to increase the pipeline throughput.  So, in this way, it is possible for a short instruction 
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Reserved    by MULTD 

to be placed in the result pipeline in stage i, i –1,i –2,.. , Where is are the first unused 

stages in RSR. 

Table 6.1. Result Shift Register – Sample 2 

(a) Result Shift Register - Sample 1 (James et al., 1988). 

Stage 
Functional 

Unit Source 

Destination 

Register 
Valid 

Program 

Counter 

1   0  

2 Integer Add  0 1 7 

3   0  

4   0  

5 FLPT ADD 4 1 6 

. . . . . 

. . . . . 

N   0  

 

        (b) Sample 2 

Stage FU/OP 
Destination 

Register 
Valid 

Program 

Counter 

1     

2 LD (1)  0 A 

3 LD (2)  0 B 

4     

5     

6     

7     

8     

9     

10     

11     

12     

13 MULTD   C 

14     

These modifications necessary to reserve the entries in the RSR, causes 

complexity in handling instructions completed out of order, as in the Out of Order 

Shift 

Upward 

 

 

Instruction 

In stage 1 

writes the 

result-bus 

 

Shift 

Upward 

 

 

Instruction 

In stage 1 

writes the 

result-bus 
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Completion, these instructions must be kept in the RSR to be loaded to the result bus 

only when their PC is the current program counter to be committed. 

6.2 The Proposed Scheme Algorithm 

To implemented the proposed scheme, we can follow the following steps: 

- Initialization: 

1. Initialize the RSR 

- Instruction Issue: 

1. If there is no RAW dependency and there is enough space in RSR for the next 

instruction, then it is issued. 

2. Otherwise, stall the instruction issue.  

- Instruction Completion: 

1. If the instruction caused an exception, mark exception bit in the RSR for that 

instruction  

2. If the completed instruction has not the correct PC, stall the instruction until 

instruction with the correct PC is completed. Otherwise commit instruction. 

3. At the commit stage, check the exception bit: 

1. If there is no fault: 

a. Commit state (the value is written to the register file). 

b. The entry removed from the RSR. And all reserved entries for that 

instruction are flushed.  

2. If the exception bit is set: 

a. Issue is stopped in preparation for the interrupt. 
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b. Squash subsequent instructions in RSR 

c. All further writes into the register file are inhibited. 

d. The in-order state of the register file is restored. 

6.3 Scheme Analysis 

Many experiments were done to test the scheme to handle the precise interrupts. 

The same variations used in previous chapters were applied here. The results of the 

experiments were as follows: 

C- The first sample of code is applied to this suggested approach: 

1. The total number of shifts and tests were changed, as we reorder instructions to 

resolve hazards, and change the FUs. The percentage for the failed tests and 

succeeded tests was as shown in Fig.6.2.  

2. Fig. 6.1 shows how is the number of shifts and failed tests, is changed after each 

modification. As we change the number of functional units, we get better 

performance. The same happens if we resolve the dependencies among 

instructions and if we combine the two experiments together.  

B- The second sample of code is applied. The results were as follows: 

1. The total number of tests was the same without any modification while the total 

number of shifts is increased as we tried to reorder instructions to resolve 

dependencies. The percentage for the failed tests and succeeded tests was shown 

in Fig.6.3. 

2. Fig. 6.4 shows that, as we increase the number of functional units or having no 

dependencies, we get better performance. This better performance appears in the 
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increase in the number of succeeded tests that are done and decrease in the failed 

ones.  

C- Several values of the size of RSR are examined. When we applied both samples, 

the results were as shown in figure 6.5. As we increase the size of the RSR, we 

get better results in the total number of tests. This improvement is slightly 

changed when we expanded the RSR to the double size of the minimum size 

needed, which is the longest execution time among all instructions used. 

 
 

(a) Original Code. 

N
o
 o

f 
 F

. 
T

es
ts

 f
o
r 

ea
ch

 I
n
st

r.
 

Instruction Number 



www.manaraa.com

 132 

 
 

(b) Changing Number of FUs. 
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(d) No dependencies, change FUs 

Figure 6.1. Proposed Approach. Sample 1, the number of failed tests per each 

instruction 
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Sample1:Method 2 

(Resolve Dep . & Change FUs )

Succ. 

Tests

46%

Failed 

Tests

54%

 

 

(c)Changing FUs. and Resolve Dep.  

Figure 6.2. Proposed Approach. Sample 1. The number of failed tests and Succeed tests 

to the Total number of tests. 

Sample2: Method 2

Failed 
Tests
14%

Succee.
Tests
86%

 
Figure 6.3. Proposed Approach. Sample 2. The number of failed tests and Succeed tests 

to the Total number of tests. 
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(a) Original Code. 

 
 

(b) Changing Number of FUs. 
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(c) Resolve all Dependency hazards. 

 
 

(d) Reordering the Instructions to resolve dependencies and changing FUs. 

Figure 6.4. The Proposed Approach. Sample 2, the number of failed tests per each 

instruction 
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(a) The Total number of tests as the size of RSR changes: Sample 1  

 
 

(b) The number of failed tests as the size of RSR changes: Sample 1 
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(c) The Total number of shifts as the size of RSR changes: Sample 1 

 
 

(d) The Total number of tests as the size of RSR changes: Sample 2  
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(e) The number of failed tests as the size of RSR changes: Sample 2 

 
 

(f)The Total number of shifts as the size of RSR changes: Sample 2 

Figure 6.5. The Proposed Approach. After increasing the size of the RSR. 
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The precise interrupt is still accurately handled in this compromised approach. 

The process state can be easily restored, since no instruction stores its state and commits 

its results out of order. It increases the speed up of the pipeline and improves the 

parallelism of the whole execution of the program code without reordering the 

committing of the instructions to keep the In-Order Completion of instructions with less 

hardware and logic control than that used in the Out of Order Completion schemes. 

Instructions are enqueued in the register file; only when their operands are 

available, in program order the same as that in the Out of Order Completion Scheme. 

When instruction is successfully de-queued, its results are committed in order. The 

computed results that are computed out of order is held in the RSR file until previous 

instructions, finishing later, have updated the register file. Since exceptions are tested at 

the commit stage, exceptions are handled in program order. When the committing 

instruction interrupted, all later instructions are squashed. 

This scheme has better results than the In Order Completion while keeping the 

same advantages of being simple and easy to be implemented (Disregarding the 

complexity of keeping the uncommitted instructions in the RSR, until the prior 

instructions completed execution). The nature of instructions and dependencies among 

them affect the results obtained too. 

In this approach independent instructions can be executed without waiting for 

the in-order completion. This can be done if these instructions are safe from exceptions, 

or any pipelining hazards. This is a costly procedure, compared to the In Order 

Completion scheme, since it is difficult to find such instructions. Also, if any previous 

unexecuted (uncommitted) instruction has an exception, these out-of-order executed 
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instructions should be re-executed unless their committed results don’t affect the 

process state.  

The improvement of this compromised approach reduces the effect of the In 

Order Completion approach disadvantages but still not deleting them. Because we have 

a fixed size of the RSR, long executed instructions will reserve most of the RSR entries 

preventing others from being issued. Also, if the space is not enough for a particular 

long executed time instruction then it will wait for other instructions to be freed from 

the RSR, preventing other instructions also from being issued. Sometimes we need to 

handle the bad fragmentation in the RSR table, which needs special management. 

Keeping the in-order committing of instructions limit the performance too. 

In this scheme there is no need to resolve WAR. Since no instructions written 

before a previous read operation has time to commit, so no read operation would obtain 

an incorrect value. The architectural model proposed guarantees this facility, since the 

operand registers are read at the time an instruction is issued. Also, there is a single 

result bus that returns results to the register file. This bus may be reserved at the time an 

instruction is issued or when an instruction is approaching completion. This is the same 

as all Out of Order Completion schemes, so there was no need to handle this problem in 

this scheme or any of the previous out of order schemes.   

To solve the RAW dependencies, we added an entry in the RSR file to store 

DestRegOld to get the values of the operands when it is needed to avoid waiting for the 

value to be committed, which can compensate the bypassing paths used in ROB and 

HB. When the interrupt is detected, the old values are restored. This useful feature 

requires more read ports to get the DestRegOld value stored in the RSR file, the same as 

the History Buffer scheme.  
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6.4 Summary 

When we compare our scheme with the other used schemes, we should consider 

the amount of hardware required in each scheme. In contrast to other schemes, the 

proposed scheme requires just one table to handle the interrupts precisely. The Out of 

Order Completion schemes use more files than the proposed scheme. The ROB scheme 

requires two files: the ROB and the RSR files. The HB scheme requires: the RSR and 

the HB files, while the FF scheme uses three files: in addition to the FF and RSR files, it 

requires AF file too. 

Our suggested approach necessitates an increase in the number of the read ports 

the same as that required in the HB scheme and ROB scheme with bypassing; in order 

to resolve the RAW dependencies. The number of comparators needed in the Reorder 

Buffer scheme with bypassing is no longer needed. The proposed scheme uses the same 

mechanism used in the History Buffer and Future File schemes to compensate the use of 

these comparators. 
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7. Precise Interrupt Handling in a VLIW Processors 

 

In this chapter we introduce the reorder buffer with future file and history buffer 

methods after extending them for a Very Long Instruction Width (VLIW) processor. 

The final scheme, which is discussed, is the Current State Buffer scheme.  

7.1 Handling Precise Interrupts in VLIW Processors 

In a VLIW processor, interrupt handlers should not modify any of source 

registers in the interrupted operation because subsequent operations with respect to the 

original program order that use the same source register would need to be re-issued and 

re-executed after resumption. The processor cannot re-execute those operations because 

they may have already updated the processor state.  

Debugging requires precise interrupt in any architectural model. Since the 

performance is less critical during debugging, the debugger can execute the original 

(unscheduled) code in program order. 

The same schemes used in chapter four and chapter five can be used here with 

some modification to be applied on VLIW processors. Consider the sample code in 

Table 7.1, scheduled for a 2-issue VLIW machine with functional units as shown. The 

latencies of the ADD, SUB and DIV operations are 1, 1 and 2 cycles, respectively. This 

example illustrates the operation of both the reorder buffer with future file and the 

history buffer schemes since each buffer has similar operation mechanisms. The DIV 

operation in Mop2 is assumed to cause a trap, so it will not be re-executed after return 

from the interrupt handler. 
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    Table 7.1. A sample code for a 2-issue VLIW processor. 

 ALU Unit  DIV Unit 

Mop1 ADD (R2) NOP 

Mop2 ADD (R1) DIV (R3) 

Mop3 ADD (R4) NOP 

Mop4 ADD (R1) NOP 

Mop5 ADD (R4) NOP 

7.2 Reorder Buffer with Future File 

The reorder buffer keeps enough information about MultiOps and updates the 

processor state in scheduled program order. MultiOps in the scheduled code update the 

processor state sequentially, but the operations of the original program may not 

complete in original program order. The reorder buffer structure is shown in Table7.2. 

       Table7.2. Reorder buffer. 

 

 

The PC field is the program counter address of a MultiOp. Exen is a one-bit 

location that is set when the nth operation is executed. Destn is the destination register 

number of the nth operation. Resultn is the result generated by the nth operation. Excptn 

is the exception conditions generated by the nth operation if one is generated. The 

reorder buffer is a circular buffer consisting of Head, Tail and OpSequence pointers. 

PC 
Exe1…E

xen 

Dest1… 

Destn 

Results1… 

Resultn 

Excpt1…  

Excptn 

     

. . . . . 

. . . . . 

. . . . . 

     

Head 

Tail 
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Head and Tail pointers point to the head and tail entries in the buffer, respectively. 

OpSequence pointer provides an index to the required operation field. The maximum 

buffer length is the longest latency operation plus one.  

At MultiOp issue, the PC of the MultiOp is placed into the PC field of the 

reorder buffer entry pointed by tail pointer, and the destination register numbers are 

written into the Dest fields. When an operation executes without an exception, the result 

is written into the future file, its Exe bit is set and its result field is updated. The future 

file is a replica of the architectural register file. If an operation caused an exception, the 

exception status is recorded in the Excpt field. At each cycle, the entry pointed to by the 

head pointer is examined. The results are written into the architectural register file if all 

Exe bits of nonempty operation fields, i.e. excluding NOPs, are set in the entry. If an 

exception occurs in one of the operations, the whole MultiOp is said to be at the 

interrupt boundary. Then instruction issue is stopped, and all pipelines are flushed. The 

architectural register file loads its contents into the future file. The PC value of the 

MultiOp and the exception bits within the instruction are saved as part of the processor 

state to identify the source of the exception, and the reorder buffer contents are 

discarded. The first excepting operation, in left-to-right order in a MultiOp, will be 

reported if more than one operation in the MultiOp cause exceptions. A store buffer is 

required to buffer the writes by the store operations into the cache until they are 

removed from the reorder buffer. 

7.3 History Buffer 

The history buffer method can be extended in a similar way as the reorder buffer 

method for VLIW. The operating principle for the extended history buffer method is the 

same as the original history buffer scheme. It uses a history buffer to keep the old values 
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n 

of registers, rather than the latest values of registers as in the reorder buffer. The buffer 

structure is the same as the reorder buffer without a future file, except that the Result 

field is replaced with the Old field that retains the old value of a register. 

7.4 Current-State Buffer 

The current-state buffer is a new interrupt-handling scheme for a VLIW 

processor that signals interrupts immediately using a modest buffer suggested in. It 

supports both the Less-than-or-Equals and Equals scheduling models. It detects and 

signals interrupts as soon as they occur. The current-state buffer does not re-execute the 

operations that have already completed before the interrupt is taken when the program 

resumes. It relies on compiler scheduling support but requires only simple hardware. 

The hardware consists of a buffer, called current-state buffer, and a mask register that is 

shown in Figure 7.1. Each buffer entry consists of a PC field for each MultiOp, an Exe 

bit and Excpt bits for each operation.  

 

1  n 

 

PC Exe1… Exen Excpt1… Excptn 

   

…
 

…
 

…
 

   

Figure 7.1. The current-state buffer and mask register. 

The PC value of a MultiOp to be issued next is put into the PC field of the 

buffer entry pointed to by the tail pointer. Then the tail pointer is incremented. Each 

Tail 

Head 

OpSequence 

Mask Register 

Issue Register 
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operation in the MultiOp is issued with an attached buffer address, an operation 

identifier, and exception tag. When an operation is executed, the tags attached to each 

operation access the associated buffer entry. Then its computed result is written into the 

register file, and its Exe bit is set in the current-state buffer if there is no exception. On 

each cycle, the entry at the head of the buffer is examined. The entry will be discarded 

by incrementing the head pointer if all Exe bits of nonempty operation fields are set. An 

exception will be signaled immediately to the exception logic if an operation causes an 

exception. 

1. The excepting operation’s exception bits are set in the buffer, the issue is 

stopped and all pipelines are flushed.  

2. The processor state, the relevant portion of memory and the current-state 

buffer contents between the head and tail pointers are saved. The saved buffer 

contents identify the source of the excepted operation.  

3. After return from the interrupt handling routine, previously executed and 

completed operations are not re-executed, the interrupt handler routine 

returns by a special return instruction, which switches to a special mode.  

In the special mode, the processor, the memory state and the current-state buffer 

contents are resumed, except the PC register. The buffer contents are examined starting 

from the head pointer. If all operations in a MultiOp completed execution, that MultiOp 

is not fetched. However, pipeline bubbles are inserted in order to honor dependence 

latencies of scheduled operations if there are MultiOps previously issued from the 

current-state buffer and being still executed in the pipelines. Otherwise, no pipeline 

bubbles are needed. If one or more operations in a MultiOp are still incomplete, the PC 

value of the entry is loaded into the PC register and the associated MultiOp is fetched 
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and brought into the issue register. The mask register is loaded with the Exe bits of the 

entry, masking the issue register so that previously executed operations are not re-

issued. This modified MultiOp is then issued to the functional units. This process 

continues until the head pointer passes the tail pointer. (This is detected by the buffer 

control logic.)  As soon as this happens, the buffer control logic pops up the PC register, 

either from the stack or a shadow PC register, and the processor resumes execution from 

the PC.   

7. 5 Compiler Support 

Anti-dependence between two operations may cause a problem in the current-

state buffer when the sink operation of anti-dependence completes before the source 

operation of anti-dependence does. If the source operation excepts, the interrupt handler 

may read an incorrect value of the source register on which the anti-dependence occurs. 

Such anti-dependence is called an unsafe anti-dependence. The compiler can treat 

unsafe anti-dependencies between operations as if they are flow dependencies. It must 

guarantee that the destination register of the sink operation is not modified until the 

source operation completes.  

The compiler modifies only unsafe anti-dependencies. Safe anti-dependencies 

remain in the code. In the pass-scheduling phase of the compiler, unsafe dependencies 

are converted into flow-dependencies. 

However, there is a drawback in treating unsafe anti-dependencies as flow-

dependencies. The scheduling times tend to increase because of NOPs that have to be 

inserted to increase the distance between two anti-Head dependent operations. This 

could increase the schedule length and degrade the performance, particularly in Equals 
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scheduling model because it is likely that Equals model produces more unsafe anti-

dependencies than Less-than-or-Equals model.  

7.6 Schemes Experiments 

The operation of the reorder buffer with future file and the history buffer for the 

same example illustrated in table 7.1 is shown in table7.3.  

        Table7.3. Execution steps in the Reorder and History Buffer 

PC Dest1 Exe1 Exp1 Dest2 Exe2 Exp2 

1 R2 0 0 - - - 

       

       

 
PC Dest1 Exe1 Exp1 Dest2 Exe2 Exp2 

1 R2 1 0 - - - 

2 R1 0 0 R3 0 0 

       

 
PC Dest1 Exe1 Exp1 Dest2 Exe2 Exp2 

1 R2 1 0 - - - 

2 R1 1 0 R3 0 0 

3 R4 0 0 - - - 

 
PC Dest1 Exe1 Exp1 Dest2 Exe2 Exp2 

4 R1 0 0 - - - 

2 R1 1 0 R3 0 1 

3 R4 1 0 - - - 

 
PC Dest1 Exe1 Exp1 Dest2 Exe2 Exp2 

2 R1 0 0 - - - 

       

       

 
PC Dest1 Exe1 Exp1 Dest2 Exe2 Exp2 

2 R1 1 0 - - - 

3 R4 0 0 - - - 

       

 
PC Dest1 Exe1 Exp1 Dest2 Exe2 Exp2 

2 R1 1 0 - - - 

3 R4 1 0 - - - 

4 R1 0 0 - - - 
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PC Dest1 Exe1 Exp1 Dest2 Exe2 Exp2 

2 R1 1 0 - - - 

3 R4 1 0 - - - 

4 R1 0 0 - - - 

 
PC Dest1 Exe1 Exp1 Dest2 Exe2 Exp2 

2 R1 1 0 - - - 

3 R4 1 0 - - - 

4 R1 1 0 - - - 

The operation of the current state buffer for the same example is the same as that 

shown in table7.3 except after the exception is detected. Table7.4 shows the results after 

cycle n+4.  

Table7.4. Execution steps in the current-state buffer 

PC Exe1 Exp1 Exe2 Exp2 

4 0 0 - - 

     

     

 
PC Exe1 Exp1 Exe2 Exp2 

4 1 0 - - 

5 0 0 - - 

     

 
PC Exe1 Exp1 Exe2 Exp2 

4 1 0 - - 

5 1 0 - - 

     

 

Figure 7.2 shows the comparison between the three previous schemes performed 

on the same sample of code. 
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Figure 7.2. The comparison diagram between the three schemes 
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7.7 Summary 

In this chapter, three schemes for handling precise interrupts in VLIW 

processors were implemented and analyzed. The algorithms written for implementing 

these schemes give the same results obtained in. The Current State Buffer gives the best 

results over all the other two schemes.  
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8. Conclusion and Future Work 

    

In the thesis, we have implemented and investigated five schemes for handling 

the precise interrupts in pipelining systems and a new scheme is suggested. Another 

study is done for the VLIW processors. Obtained results show the following 

considerations and conclusions.  

8.1 Preface  

Some observations are appropriate after introducing the different schemes. The 

average time to produce the finished results is faster if each stage is specialized than if 

one general-purpose stage does it all, even if the total time to produce each result, start 

to finish, is lengthened. There is an implication that each stage takes the same amount of 

time, and as a result of this constant time per stage, we get results on regular basis 

(Henry et al., 1989). We used specialized stages in all schemes discussed in the thesis, 

except the suggested approach.  

The second important point is that there are some practical limitations on 

practical depth of a pipeline, which arise from:  

1. Pipeline latency. The fact that the execution time of each instruction 

does not decrease, adds limitations on pipeline depth;  

2. Imbalance among pipeline stages. Imbalance among the pipe stages 

reduces performance since the clock can run no faster than the time 

needed for the slowest pipeline stage;  
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3. Pipeline overhead. Pipeline overhead arises from the combination of 

pipeline register delay (setup time plus propagation delay) and clock 

skew. 

So, once the clock cycle is as small as the sum of the clock skew and latch 

overhead, no further pipelining is useful, since there is no time left in the cycle for 

useful work. 

Another remarkable notice is that, the change of the FUs sometimes becomes 

more costly than the better performance obtained. When the execution stage is 

extended, the pipeline is extended too. In addition to the longer (and possibly more 

frequent) stalls, the longer pipeline requires additional forwarding hardware. It also 

requires more complex hazard detection to find dependencies in the additional stages.  

The major benefit to a longer pipeline is that each stage may be shorter than the case 

where there is a shorter pipeline. This means that the clock cycle can be shorter, 

allowing more instructions to be issued in a fixed time.  Of course, the added stalls 

might put away this benefit, but the hope is that at least some speedup will be left. 

8.2 The Comparison Between Schemes 

First of all, we compare the different schemes used to handle precise interrupts 

in scalar processors, with the architecture discussed fully in chapter 4. 

Before comparing the different mechanisms used throughout the thesis, we 

should take into consideration the fact that the performance gained by adding a new 

mechanism has to be balanced against the amount of hardware required to implement 

the mechanism, and that implementation's potential impact on the cycle-time of the 

processor. Both of these are extremely difficult to quantify without an actual 
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implementation, and even with such an implementation it is sometimes difficult to 

isolate the impact caused exclusively by the new mechanism, or by its interactions with 

other processor elements. 

We built our own simulators to verify the results obtained since we did not find 

any ready used simulators. The only existing simulators, which concerned in pipelining 

did not handle interrupts at all and just mentioned that it is another heavy work to be 

done. Even though, those uncompleted pipelined simulators, were built with the full 

corporation between several universities in the United States of America and the IBM 

Company.  

So, the comparisons of our scheme with other schemes that implement precise 

interrupts were more qualitative than quantitative. 

In the In Order Completion, the in-order state is always available in the register 

file, thus it is restored immediately (unlike the other schemes). But this scheme suffers 

from stalling instructions at the issue stage, the decrease in performance and long 

program execution time.  

The key features of the Reorder Buffer, that can be stated after the discussion 

and analysis of the results in chapter 5, are that: The Reorder Buffer requires complex 

bypass paths, which may increase register read latency. If we use it without bypassing, 

ROB not much better than In Order Completion. With a relative small number of ROB 

entries, implementing precise interrupts causes relatively little performance losses. The 

reason of why some performance loss remains may be that a pending store will cause all 

further load or store to stall at issue. Finally, the Reorder Buffer scheme requires 

rollback logic to put old results back in register file on exceptions. 
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In the History Buffer scheme, the in-order state is not always available in the 

register file, thus it requires rollback logic to put old results back in register file on 

exceptions. This is because instructions complete out-of-order, while the register file 

updated immediately, the hardware cleans-up on exception, so it is used to undo 

instructions. History Buffer has fewer interconnections than bypassing ROB, but 

requires another read ports to register file with a total of three. The final feature is that 

bypassing is slightly more complex here than that in Reorder Buffer. 

The Future File scheme features can be summarized as being fast, need no 

bypass paths, with simple rollback, but duplicates of register files are needed which are, 

the Future File and the Architecture File.  The future file removes the need for the 

associative lookup of the reorder buffer while still not incurring cost in saving state. In a 

system with a future file, the recovery from an exception is simple since it is only 

necessary to drain the reorder buffer and clear a set of flags (David, 1997). 

The suggested scheme is a compromised technique between the features of Out of 

Order Completion and that of the In Order Completion schemes. Although this 

technique reduces the effect of the In Order Completion approach disadvantages, it also 

requires the committing of instructions only in order, the same as the Out of Order 

Completion schemes. Another limitation is the size of the RSR, which may force long 

instructions to wait until the required space is available. In contrast to other schemes, 

the compromised one requires less hardware and control logic to handle the interrupts 

precisely than all other schemes.  

The following points can summarize the above comparison 
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o The reorder buffer must complete all outstanding register updates that come 

before the faulting instruction prior to being invalidated. This could take many 

cycles, especially since some of the instructions in question will not have 

completed.  

o There is no way around this when using a future file, as it holds only the most 

recent values after the exception.  

When a future file is not used, we can provide the reorder buffer with the ability 

to invalidate all entries that were allocated after the instruction. Since the most recent 

value is provided by the associative lookup, we don't need to wait on outstanding, valid 

instructions. 
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(a) The Total number of shifts/Tests in 

the three schemes when the size = 5: 

Sample 1 

(b) The Total number of shifts/Tests in 

the three schemes when the size = 5: 

Sample 2 
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(c) The Total number of shifts/Tests in 

the three schemes when values become 

stable: Sample 1 

(d) The Total number of shifts/Tests in 

the three schemes when values become 

stable: Sample 2 

Figure 8.1. Comparison between the schemes: “Compromised Approach (IO)”, ROB, 

HB, and FF schemes. 

Figure 8.1, shows the comparison between the four main schemes used for the 

scalar processor mentioned in chapter four. The first graphs (a, b) restricted when the 

size of the buffer used in the algorithm is 5 at which the results become steady in all 

these schemes. Since the minimum size of the RSR should be at least the same as the 

largest pipeline stage, the comparison is repeated but now with a size of the buffer equal 

to the value where the results can not be changed even if the size is increased more. 
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As shown from the figure, the better improvement regarding the total number of 

the tests is obtained in the case of the suggested scheme. The total number of shifts was 

the maximum in this scheme, this can be understood when we remember that the 

scheme uses only one buffer, and every time an instruction is issued multiple shifts are 

done, especially when trying to get empty places to this newly issued instruction. 

Finally, as shown from the previous analysis in this chapter and the previous 

ones, the suggested technique gives the best results. The Reorder Buffer technique is a 

good one but its drawbacks can be solved easily in the History Buffer. The advantages 

of he HB are used in the proposed technique to solve the ROB drawbacks. 

An important improvement to this method can be accomplished by using an 

intelligent compiler, to do the proper re-arrangements and optimization to reorder 

instructions to get the minimum dependencies among instructions.  

Secondly, the thesis discusses the handling of precise interrupts in VLIW 

processors, as shown in chapter seven, the Current State Buffer scheme gives better 

results than all other schemes used.  

8.3 Extensions 

8.3.1 Handling other State Values: 

Most architectures have state information other than what we have assumed in 

the architectural model in the thesis. Such state information is the page and segment 

table, interrupt mask conditions, etc.  
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In architectures that use condition codes, the condition codes are state 

information. Extensions to Reorder Buffer, History Buffer, and the Future File can be 

used to handle such information state.  

8.3.2 Linear Pipeline Structure 

An alternative to the parallel functional unit organizations used in the discussion 

previously is the linear pipeline organization. Linear pipelines provide a more natural 

implementation of the register-storage architectures like the IBM 370 (James et al., 

1988). In general, reordering instructions after execution is not as significant as issue in 

such organizations because it is natural for instructions to stay in order as they pass 

through the pipe. Even if they finish early in the pipeline, they proceed to the end where 

exceptions are checked before modifying the process state. Hence, the pipeline itself 

acts as a sort of reorder buffer (James et al., 1988).  

Linear pipelines often have several bypass paths connecting intermediate 

pipeline stages. A complete set of bypasses is typically not used, rather there is some 

critical subset selected to maximize performance while keeping control complexity 

manageable (James et al., 1988).  

8.3.3 Vectors  

Implementing precise interrupts in pipelined vector architecture is more difficult 

than for a scalar architecture. When considering precise interrupts with respect to vector 

instructions, preciseness must be carefully defined. Unlike the scalar instructions 

described thus far, vector instructions do not produce a single result and change the 

system state as they complete. Rather, they produce a series of results that change the 

system state over the course of many clock periods. The sequential architectural model, 
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as applied to vectors, requires that one vector instruction complete its last result before 

the next begins producing results (James et al., 1988).  

There are two primary classes of vector architectures: those with vector 

registers, and those with memory-to-memory vector operations. For vector register 

architectures, we extend our earlier methods for maintaining scalar register precisely 

(James et al., 1988). 

 Various methods for implementing precise interrupts can be extended for vector 

registers, but the cost is a doubling of the number of hardware registers plus some 

additional control hardware to keep track of the “current” pointers (James et al., 1988). 

8.3.4 In-Line Interrupt Handling  

To improve the performance of the handling of interrupts and to get better 

results, we can use any of the two methods of in-lining the interrupt handler within the 

reorder buffer as mentioned in (Amer et al., 2000). Both of the schemes exploit the 

property of a reorder buffer: instructions are brought in at the tail, and retired from the 

head. If there is enough room between the head and the tail for the interrupt handler to 

fit, we essentially inline the interrupt by either inserting the handler before the existing 

user-instructions, or after the existing user-instructions. Inserting the handler routine 

instructions after the user-instructions, the append scheme, is similar to the way that a 

branch instruction is handled: the PC is redirected when a branch is predicted taken, 

similarly in this scheme, the PC is redirected when a TLB miss is encountered. Inserting 

the handler instructions before the user-instructions, the prepend scheme, uses the 

properties of the head and tail pointers and inserts the handler instructions before the 

user-instructions. (Amer et al., 2000) 
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The two schemes differ in their implementations, the first scheme being easier to 

build into existing hardware. To represent our schemes in the following diagrams, we 

are assuming a 16-entry reorder buffer, a four-instruction interrupt handler, and the 

ability to fetch, en-queue, and retire two instructions at a time. To simplify the 

discussion, we assume that instruction state is held in the ROB entry, as opposed to 

being spread out across ROB and reservation-station entries. A detailed description of 

the two in-lining schemes follows:  

1. Append in-line mode: The hardware responds by checking to see if the handler 

would fit into the available space. Assuming the handler is four instructions long, 

it would fit in the available space. The hardware turns off user-instruction fetch, 

sets the processor mode to INLINE, and begins fetching the first two handler 

instructions. These have been en-queued into the ROB at the tail pointer as usual. 

For example, the Alpha’s TLB-write instructions modify the TLB state once they 

have finished execution and not at instruction-commit time. In many cases, this 

does not represent an inconsistency, as the state modified by such handler 

instructions is typically trans- parent to the application; for example, the TLB 

contents are merely a hint for better address translation performance. 

2. Prepend in-line mode: The hardware checks to see if it has enough space, and if 

it does, it saves the head and tail pointer into temporary registers and moves the 

head and tail pointer to number of instructions before the current head. At this 

point the processor is put in INLINE mode, the PC is redirected to the first 

instruction of the handler, and the first two instructions are fetched into the pipe. 

Eventually, when the last handler instruction fills the TLB, the flag of the 

excepted instruction can be removed and the exceptional instruction may re-

access the TLB. This implementation effectively does out-of-order committing of 
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handler instructions, but again, since the state modified by such instructions is 

transparent to the application, there is no harm in doing so. (Amer et al., 2000)   

The two schemes presented differ slightly in the additional hardware needed to 

incorporate them into existing high performance processors. Both the schemes require 

additional hardware to determine if there are enough reorder buffer entries available to 

fit the handler code. Since the prepend scheme exploits the properties of the head and 

tail pointers, additional registers are required to save the old values of the head and tail 

pointers. As we shall see later, incorporating these additional registers will allow for the 

prepend scheme to out-perform the append scheme by 20-30%. There are a few 

implementation issues concerning the in lining of interrupt handlers. They include the 

following: 

1. The hardware knows the handler routine length.  

2. There should be a privilege bit per ROB entry.  

3. Hardware needs to signal the exceptional instruction when the handler is 

finished. 

4. After loading the handler, the “return from interrupt” instruction must be killed, 

and fetching resumes at nextPC, which is unrelated to exceptionalPC. 

5. In-lined handler instructions shouldn’t affect the state of user registers. 

6. The hardware might need to know the handler’s register requirements. 

7. Branch mispredictions in user code should not flush handler instructions. (Amer 

et al., 2000) 

8.3.5 Register File Extension 
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When using the Reorder Buffer we can extend the register file used. Here, in the 

Register File Extensions, the register file holds the values of the specification registers 

of the machine. We still denote the set of registers by R. We denote the value of the 

register r 2 R during cycle T by R[r] T: data. We assume that all registers have a 

common width.  We denote the set of possible values of a register by W (R) (Daniel, 

2001). 

The register file is extended with a producer table. The producer table records 

which instruction in the machine writes its results to a given register. For that purpose, 

the producer table contains two data items for each register. The first is a valid bit. We 

denote the value of the valid bit of register r during cycle T with R[r] T: valid. If it is 

set, there is no instruction currently executing with the register as destination. If it is not 

set, there is such an instruction. In this case, the second item, a reorder buffer tag, points 

to the last instruction with the register as destination. We denote the value of this tag by 

R[r] T: tag (Daniel, 2001). 

The reservation stations act as queue for the instructions and their source 

operands. We give each reservation station a number. We denote the values in 

reservation station number rs during cycle T by RS [rs] T. Each reservation has a full bit 

RS [rs]: full. It indicates that the reservation station is in use. In addition to that, we 

store the tag of the instruction in the reservation station in RS [rs]: tag (Daniel, 2001). 

We support instructions with an arbitrary number of source operands. Let x 

denote the number of a source operand. For each source operand, we store a valid bit RS 

[rs]:op [x]: valid. If the bit is set, the value of the operand is stored in RS [rs]:op [x]: 

data. If it is not set, we store the tag of the instruction producing the value in RS [rs]:op 

[x]: tag (Daniel, 2001). 
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8.4 Future Work 

There are many other interesting issues related to implementing precise 

interrupts. The extensions presented in this chapter can be implemented and tested.  The 

handling of memory faults can be studied also.  

8.5 Summary 

Different schemes used to handle precise interrupt in both scalar and VLIW 

processors. The comparisons of our scheme with other schemes that implement precise 

interrupts were more qualitative than quantitative. 

The suggested scheme is a compromised technique between the features of Out 

of Order Completion and that of the In Order Completion schemes. Although the 

Reorder Buffer technique is a good one, its drawbacks can be solved easily by using the 

History Buffer. The advantages of the HB scheme are used in the proposed technique.  

If we consider the amount of hardware required in each scheme, we can find that 

the proposed scheme requires just one table to handle the interrupts precisely. The Out 

of Order Completion schemes use more files than the proposed scheme. The ROB 

scheme requires two files: the ROB and the RSR files. The HB scheme requires: the 

RSR and the HB files, while the FF scheme uses three files: in addition to the FF and 

RSR files, it requires AF file too.  
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The proposed scheme tries to reduce the effect of the In Order Completion 

approach disadvantages. It requires committing of instructions the same as the Out of 

Order Completion. The limitation on the size of the RSR forces long instructions to wait 

until the required space is available.  It necessitates an increase in the number of the 

read ports the same as that required in the HB scheme and ROB scheme with bypassing; 

in order to resolve the RAW dependencies. The number of comparators needed in the 

Reorder Buffer scheme with bypassing is no longer needed. The proposed scheme uses 

the same mechanism used in the History Buffer and Future File schemes to compensate 

the use of these comparators. 
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